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Abstract. The problem of finding the smallest box enclosing the united solution set of a linear interval
system, also known as the “interval hull” problem, was proven to be NP-hard. However, Hansen,
Bliek, and others subsequently, have provided a polynomial-time solution in the case of systems
preconditioned by the midpoint inverse matrix.

Based upon a similar approach, this paper deals with the interval hull problem in the context of
AE-solution sets, where parameters may be given different quantifiers. A polynomial-time algorithm
is proposed for computing the hull of AE-solution sets where parameters involved in the matrix are
constrained to be existentially quantified. Such AE-solution sets are called right-quantified solution
sets. They have recently been shown to be of practical interest.

1. Introduction

Since the early times of interval analysis [10], one fundamental object of study has

been the solution set of a linear system Ax = b, where A (resp. b) is known to range

within an interval matrix A (resp. an interval vector b).

The formal notation Ax = b is often used to refer to the family of linear systems

generated by A and b, and traditionally, by x satisfies Ax = b, we mean that

(∃A ∈ A)(∃b ∈ b)(Ax = b). (1.1)

Thus, the solution set under study can be formally defined as

Σ(A, b) := {x ∈ R | x satisfies (1.1)}.

It is referred to as the united solution set. Since the shape of this set can be

very complicated, the purpose has been to approximate it outwardly by an interval

vector (also called a box). The smaller this box, the more precise the result, and

there is a unique smallest enclosing box called the interval hull of Σ(A, b), and

usually denoted by �Σ(A, b).

Although finding the interval hull is much simpler than finding the united solu-

tion set on its own, it is still an NP-hard problem [8]. We must actually content
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ourselves with computing an outer estimation of the interval hull, and common

methods for this aim are Gauss-Seidel, Gauss elimination or Krawczyk [12].

However, in the case of midpoint inverse preconditioned systems, the prob-

lem of finding the interval hull is not NP-hard. This result was shown in 1992

independently by Hansen [7] and Bliek [2], who both gave an explicit formula

involving polynomial-time computations for the subclass of matrices obtained after

preconditioning. Rohn [15] showed that only the inversion of a single scalar matrix

was required to compute this hull. Further, Ning, Kearfott [13] and Neumaier [11]

extended the applicability scope of this method to H-matrices.

As a preconditioning step is usually necessary for the other methods mentioned

before to behave well [7], [12], the Hansen-Bliek formula is a valuable alterna-

tive.

In this paper we extend the Hansen-Bliek method to a more general situation,

where the semantics of intervals is enriched.

Indeed, the model described by (1.1) turns out not to be adequate for many

practical problems with uncertainties in the parameters [16], though they are linear

by nature. The reason is the lack of flexibility in the quantifiers associated with

intervals. Indeed, universal quantifiers are more appropriate to represent a range of

values we need to control. For instance, one may rather look for all x such that

(∀A ∈ A)(∃b ∈ b)(Ax = b) (1.2)

or

(∀b ∈ b)(∃A ∈ A)(Ax = b). (1.3)

The set of points satisfying (1.2) is called the tolerable solution set, while the set

of points satisfying (1.3) is called the controllable solution set. More complicated

cases may also be of interest: a specific quantifier can be associated independently

to each entry of A and b. However, in all these situations, universally quantified

parameters precede the existentially quantified ones in the resulting formulae. This

constraint on the order of quantifiers is summed up by “AE” (All-Exists). In this

context, the united solution set Σ(A, b) defined before becomes a particular case. It

is rather denoted by Σ∃, ∃(A, b).

So the quantified solution sets we consider here are called AE solution sets. They

have been thoroughly studied since the 90’s [5], [9], [16], [17], and the problem of

finding the interval hull (i.e., the optimal outer box) lies in the same terms as for

the united solution set.

In this paper we extend the Hansen-Bliek method to compute the interval hull

for a preconditioned system Ax = b, with b arbitrarily quantified (A remains exis-

tentially quantified). Such AE-solution sets will be called right-quantified solution
sets. Hence, the controllable solution set is a canonic instance of the AE-solution

sets we can handle. Figure 1 depicts an example of a controllable solution set.
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Figure 1. The controllable solution set of Example 1.1 (in black), and its hull (in gray).
Annotations will illustrate our discussion in Sections 4 and 5: Points 1 to 5 are example of
candidate points. The subscript Q designates the top right orthant (x1 ≥ 0, x2 ≥ 0).

EXAMPLE 1.1.

(
[1, 1] [−0.5, 0.5]

[−0.5, 0.5] [1, 1]

)
x =

(
[−0.5, 1]

[4.5, 5.5]

)
.

It is remarkable fact that a right-quantified solution set may be disconnected, as

shown on Figure 1.

The theory of AE-solution sets is out of the scope of this paper, and the read-

er need not be familiar with it. He/she simply has to admit two results. First,

the right-quantified solution set of an interval linear problem has an equivalent

expression in pure scalar arithmetic (see Proposition 3.1). Second, he/she must

know that preconditioning is also compatible with AE-solution sets (i.e., it does

not lose any solution). This process still makes A close to the identity matrix,

and transforms a right-quantified solution set into another (wider) right-quantified

solution set.

In a word, we propose here a Hansen-Bliek-like method for computing the

interval hull of any right-quantified solution set of Ax = b, with A being close to

the identity, i.e., both centered around the identity and satisfying ρ(rad (A)) < 1

(ρ is the spectral radius).
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2. Main Result

Let us start with some conventions.

If x denotes an interval, x its upper bound and x its lower bound, we define

mid x := (x + x) / 2 and rad x := (x − x) / 2. These definitions are extended

component-wise to vectors and matrices of intervals.

Let Ax = b be an interval linear problem with midA = I, and ρ(rad (A)) < 1. We

will denote Σ the right-quantified solution set of Ax = b, with A being existentially

quantified everywhere and b arbitrarily quantified. Hence, if we assume (with no

loss of generality) that the s first components of b are universally quantified, and

the (n − s) other components not, we have:

Σ := {x ∈ R
n | (∀b1 ∈ b1) … (∀bs ∈ bs)

(∃A ∈ A)(∃bs+1 ∈ bs+1) … (∃bn ∈ bn)

Ax = (b1, …, bn)T}.

Note that we constrain universal quantifiers to precede the existential ones in

the formula. Let us fix now quantifiers for b1, …, bn once for all.

We denote Δ := rad A, b := mid b and δ the vector such that

∀i ∈ [1. . n] δi :=

{
rad bi if bi is existentially quantified,

−rad bi if bi is universally quantified.

Now, as ρ(Δ) < 1, the scalar matrix I − Δ is an M-matrix [12]. Therefore, as

a classical result, I − Δ is regular and inverse positive. We will denote by M the

inverse of (I − Δ), and by mij the entries of M. Hence, ∀(i, j), mij ≥ 0.

In the following, we borrow notation from Rohn [15].

Let us fix k ∈ [1. . n], and consider

x∗ := M(|b| + δ),

x̃k :=

{
x∗k if bk ≥ 0,
x∗k + 2mkkbk otherwise,

x∼ k :=

{ −x∗k if bk ≤ 0,
−x∗k + 2mkkbk otherwise,

νk =
1

2mkk − 1
.

Define also x̂k in the following way:

If (∀i �= k mik = 0) then x̂k = −∞,

else x̂k = max{θki, i �= k and mik �= 0}
with

θki := αki|bi| +

n∑
j= 1, j �= k

(mkj − mijαki)(|bj| + δj) with αki = mkk / mik.
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Next, compute xk and xk with the following scheme:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

if (x̃k ≥ max{0, νkx∼ k, x̂k}) then xk = x̃k

else xk = min{νkx̃k,−x̂k}
if (x∼ k ≤ min{0, νkx̃k,−x̂k}) then xk = x∼ k

else xk = max{νkx∼ k, x̂k}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Then, we will prove the following result:

• Σ is empty iff for some k ∈ [1. . n] we have� xk > xk.

• If Σ is not empty, then for all k ∈ [1. . n], the kth component of �Σ is [xk, xk].

We will split the proof into two parts. In the first part (Section 4), we assume that

some solution points exist with xk ≥ 0 and some others with xk ≤ 0. We compute

the least upper bound of |xk| with (x ∈ Σ) ∧ (xk ≥ 0), and with (x ∈ Σ) ∧ (xk ≤ 0).

We show that the former equals to x̃k and the latter to −x∼ k (Corollaries 4.1 and 4.2).

Then, [x∼ k, x̃k] is the projection of �Σ on the kth coordinate. These bounds are valid

under our assumption that xk can be positive and negative in Σ. This can be checked,

thanks to Proposition 6.1 and Corollary 6.1 in Section 6.

In the second part (Section 5), we assume that the kth coordinates of solution

points are either all positive or all negative. Therefore, we need to compute the

lower bound of |xk|. With xk ≥ 0, this bound can be either νkx∼ k or x̂k, and with

xk ≤ 0, it can be either νkx̃k or −x̂k (see Proposition 5.4 and Corollary 5.3).

3. Preliminary Results

It is well-known that the united solution set of an interval linear system Ax = b
can be equivalently written as a set of scalar linear inequalities, with respect to

the absolute vector |x|. This observation originates from Oettli & Prager [14]. It

has been extended to AE-solution sets by Shary [16]. If we specialize his result

to our case (a right-quantified system with mid (A) = I), it can be written in our

notation:

PROPOSITION 3.1.

x ∈ Σ ⇐⇒ |x − b| ≤ Δ|x| + δ.

It is worth stressing that δ is not necessarily positive, contrary to the Oettli-Prager

formula.

By fixing the sign of each component of x, the absolute values can be dropped.

Let us split R n alongside each axis into a set of 2n subspaces, called orthants, where

all the components have constant sign.

� xk > xk occurs iff both xk and xk are obtained by the “else” statements.
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DEFINITION 3.1. Let Q be a diagonal matrix such that ∀i, (1 ≤ i ≤ n) |Qii| = 1.

The set {x | Qx ≥ 0} is called an orthant of R n.

To lighten notations, we will not dissociate an orthant from its characteristic

matrix Q. Hence, we will talk about an orthant Q (Q being a matrix), and sometimes

write x ∈ Q instead of Qx ≥ 0 to emphasize the membership nature of such

condition.

Moreover, notice that x ∈ Q ⇐⇒ Qx = |x|. Therefore, as a convenient conven-

tion, we shall write |x| instead of Qx, as soon as x is known to be in Q.

PROPOSITION 3.2. Let Q be an orthant

x ∈ Σ ∩ Q ⇐⇒

⎧
⎪⎨

⎪⎩

(I − ΔQ)x ≤ b + δ, (a)

(I + ΔQ)x ≥ b − δ, (b)

Qx ≥ 0. (c)

(3.1)

Proof.

x ∈ Σ ∩ Q ⇐⇒
{ |x − b| ≤ Δ|x| + δ,

Qx ≥ 0
⇐⇒

⎧
⎪⎨

⎪⎩

x − Δ|x| ≤ b + δ,
−x − Δ|x| ≤ −b + δ,

Qx ≥ 0

which is equivalent to (3.1). �

Thanks to Proposition 3.2, we fall back into the classical situation of optimizing

bounds of variables constrained by linear inequalities, for which linear program-

ming techniques are well suited [1], [12]. However, the number of orthants grows

exponentially with the dimension of the problem, so that calls to the linear pro-

gramming solver become prohibitive.

In the classical case (the case with only existential quantifiers), Hansen [7]

and Bliek [2] found that a combinatorial sweep of the orthants was useless with

preconditioned systems, and they both give an explicit formula for �Σ. The next

proposition is just a reformulation of Proposition 3.2 with inequalities gathered in

a different way. The Hansen-Bliek method is based upon this technical result, and

so is ours.

PROPOSITION 3.3. Assume A = I, and let Q be an orthant

x ∈ Σ ∩ Q ⇐⇒

⎧
⎪⎨

⎪⎩

(I − Δ)Qx ≤ Qb + δ, (a)

(I + Δ)Qx ≥ Qb − δ, (b)

Qx ≥ 0. (c)

(3.2)

Proof. Let i ∈ [1. . n]. If Qii = 1 then (3.1.a) implies [(I − ΔQ)x]i ≤ [b + δ]i, i.e.

xi −
n∑

j= 1

(ΔijQjj)xj ≤ bi + δi.
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This can be rewritten Qiixi −
n∑

j= 1

Δij(Qjjxj) ≤ Qiibi + δi, or, in a more compact

way, [(I − Δ)Qx]i ≤ [Qb + δ]i.

If Qii = −1, then (3.1.b) implies [(I + ΔQ)x]i ≥ [b− δ]i, i.e., xi +
n∑

j= 1

(ΔijQjj)xj ≥
bi−δi. As before, we get Qiixi−

n∑

j= 1

Δij(Qjjxj) ≤ Qiibi +δi, and, again, [(I−Δ)Qx]i ≤
[Qb + δ]i. Since the latter relation is true for any i, (3.2.a) holds.

Repeating the same implications while swapping roles of (3.1.a) and (3.1.b), one

obtains also (3.2.b). Furthermore, each inequality of (3.1.a) and (3.1.b) is used once

and only once under an equivalent form, in the system gathering (3.2.a) and (3.2.b).

Therefore, conjunction of (3.2.a), (3.2.b) and (3.2.c) is also a characterization of

Σ ∩ Q. �

4. Upper Bounds of |xk|
Remember that k is fixed. We denote by Σ(k+) the set {x ∈ R

n | x ∈ Σ ∧ xk ≥ 0}.

Similarly, Σ(k−) stands for {x ∈ R
n | x ∈ Σ ∧ xk ≤ 0}. In this section, we give an

expression for the upper bound of |xk| with x ∈ Σ(k+). The upper bound of |xk| with

x ∈ Σ(k−) will immediately follow by symmetry.

The cornerstone of Hansen and Bliek’s approach is the capability to break the

combinatorial sweep we highlighted in the previous section, by locating a specific

orthant on which the global maximum is reached.

We proceed in two steps: First, we arbitrarily fix an orthant Q, and formally

identify the point that maximizes (Qx)k locally, i.e., for x ∈ Σ ∩ Q. There is only

one possible expression (noted xQ) for this maximum. As all the orthants share this

expression for their maximum, then, it is easy to isolate an orthant (noted Q(k+))

that has an overall maximum.

Although the results here are exactly the same as in the classical case, the proofs

proposed are different because we have to take into account quantifiers of b.�

For a given orthant Q, define xQ := QM(Qb + δ) so that (I − Δ)QxQ = (Qb + δ).

The next lemma shows that |xQ| maximizes |x| in Σ ∩ Q.

LEMMA 4.1 (Local maximum). The following three conditions are equivalent:

(i) Σ ∩ Q �= ∅,

(ii) xQ ∈ Σ ∩ Q,

(iii) QxQ ≥ 0 ∧ ΔQxQ ≥ −δ .

Furthermore, if one of these conditions holds, we have:

(iv) |xQ| = max
x ∈Σ ∩ Q

|x|.
� For instance, as contrary to the existentially quantified case, we cannot pick some matrix Ã ∈ A

and some vector b̃ ∈ b and check that Ãx = b̃ to prove the membership of x in Σ.
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Proof. Obviously (ii) implies (i). Let us prove (i) implies (ii). First, xQ obviously

satisfies (3.2.a). Now, by (i) there exists x ∈ Σ ∩ Q. So by (3.2.a) (I−Δ)Qx ≤ Qb+δ .

Multiplying the latter inequality by the positive matrix M gives Qx ≤ QxQ. By

(3.2.c) 0 ≤ Qx and therefore xQ also satisfies (3.2.c). Also Qx ≤ QxQ gives

(I + Δ)Qx ≤ (I + Δ)QxQ because I + Δ ≥ 0. Therefore as x satisfies (3.2.b) (i.e.

Qb − δ ≤ (I + Δ)Qx), xQ also satisfies (3.2.b) which completes the proof of (i)
implies (ii). Let us now prove that (ii) is equivalent to (iii). As xQ satisfies (3.2.a) by

construction, and as QxQ ≥ 0 is present in both (ii) (through (3.2.c)) and (iii), we

just have to prove that xQ satisfies (3.2.b) (i.e. (I + Δ)QxQ ≥ Qb − δ)) if and only

if ΔQxQ ≥ −δ . Just subtract the equality (I − Δ)QxQ = (Qb + δ) (which defines

xQ) to (I + Δ)QxQ ≥ Qb − δ to obtain the equivalent inequality 2ΔQxQ ≥ −2δ .

Therefore ΔQxQ ≥ −δ is equivalent to (3.2.b). To prove that (i)=⇒ (iv), let again x
be in Σ ∩ Q. We saw that (i) implies Qx ≤ QxQ, i.e. |x| ≤ QxQ. But xQ ∈ Q, since

(i) implies (ii). Therefore |xQ| = maxx ∈Σ ∩ Q |x|. �

We now compute the maximum of |xk| (or simply xk) for x ranging over Σ(k+).

Define Q∗ and Q(k+) as the following diagonal matrices:�

Q∗
ii := sign(bi); Q(k+)

ii :=

{
1 if i = k,
sign(bi) otherwise.

PROPOSITION 4.1 (Global maximum).

Σ(k+) �= ∅ =⇒
{

Σ ∩ Q(k+) �= ∅,
(xQ(k+) )k = max{xk | x ∈ Σ(k+)}.

Proof. Consider any x ∈ Σ(k+) and denote its orthant by Q. Therefore Qkk = 1

and Qb ≤ Q(k+)b. Therefore, as M is positive, we have

M(Qb + δ) ≤ M(Q(k+)b + δ).

By definition of xQ and xQ(k+) this means QxQ ≤ Q(k+)xQ(k+) . Now, using (i) =⇒ (iv)

in Lemma 4.1, we have Qx ≤ QxQ. Therefore we have xk ≤ (xQ(k+) )k (because

Qkk = Q(k+)
kk = 1).

This inequality holding for any x ∈ Σ(k+), we have

(xQ(k+) )k ≥ max{xk|x ∈ Σ(k+)}.

Now, by the part “(i) implies (iii)” of Lemma 4.1, Σ ∩ Q �= ∅ implies both 0 ≤ QxQ

and −δ ≤ ΔQxQ. This gives both 0 ≤ Q(k+)xQ(k+) and −δ ≤ ΔQ(k+)xQ(k+) (because

� We define sign(0) := 1 (but −1 would make no difference).
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QxQ ≤ Q(k+)xQ(k+) and Δ ≥ 0). Applying the part “(iii) implies (ii)” of Lemma 4.1,

we have xQ(k+) ∈ Σ ∩ Q(k+) ⊆ Σ(k+). Therefore Σ ∩ Q(k+) �= ∅ and

(xQ(k+) )k ≤ max{xk | x ∈ Σ(k+)},

which completes the proof. �

Remark 4.1. By the contrapositive of Proposition 4.1, if (xQ(k+) )k < 0 then Σ(k+) has

to be empty.

Proposition 4.1 shows that computing the maximum of xk in Σ(k+) only requires

the computation of the kth component of Q(k+)xQ(k+) . Therefore, one does not need

to compute all the components of such vectors, and the next corollary shows that

these n reals can be computed directly from a single vector x∗, as in the classical

Hansen-Bliek algorithm.

COROLLARY 4.1. Let x̃ be defined from x∗ (see Section 2).

(xQ(k+) )k = x̃k, (i)

Σ(k+) �= ∅ =⇒ x̃k = max{xk | x ∈ Σ(k+)}. (ii)

Proof. Thanks to Proposition 4.1, we just have to prove (i).
Clearly, Q∗b = |b| and x∗ = Q∗xQ∗ = M(Q∗b + δ). Now, if sign(bk) = 1,

we have Q(k+)
kk = Q∗

kk, i.e., Q(k+) = Q∗, and therefore (xQ(k+) )k = x∗k . Otherwise,

Q(k+) = Q∗ + 2ekeT
k (ek is the kth column of I) and |xQ(k+) | = M(Q(k+)b + δ) =

M((Q∗ + 2ekeT
k )b + δ) so (xQ(k+) )k = x∗k + 2mkkbk. Finally, (xQ(k+) )k = x̃k. �

As a direct consequence, we can compute the lower bound of xk, with x ∈
Σ(k−).

COROLLARY 4.2.

Σ(k−) �= ∅ =⇒ x∼ k = min{xk | x ∈ Σ(k−)}.

Proof. Just notice that Ax = b is equivalent to A(−x) = (−b) and apply

Corollary 4.1 to this new system. �

5. Lower Bound of |xk|
The same idea is applied for the minimum of |xk| as in the previous section,

except that the situation gets much worse since a local minimum can have up to

2n different expressions, instead of one. Each of these expressions will be called a

(formal) candidate.

In the classical case, there is still a single candidate for minimization so the situa-

tion becomes now really different with quantifiers. This means that our contribution

lies, for the most part, in this section.
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We shall prove first in Section 5.1 that the local minimum of |xk| (the minimum

in a given orthant Q) is necessarily reached at a point that belongs to a specific

line called the “support line” (of Q). Next, in Section 5.2, we show that only

2n points of this line can be the candidates for miminization. We give an explicit

formula for each of them, dealing with two distinct situations (the inner candidates,

and the border candidates). Further, in Section 5.3 we show that the minimizer is

precisely the one that maximizes the kth component (in absolute value) among all

the candidates. This finally provides the local minimum.

In Section 5.4 we prove, as in the case of the upper bound, that the global

minimum (i.e., the minimum of all the orthant minima) is met on a formally

identified orthant, which is still by the way Q(k+).

5.1. THE SUPPORT LINE

The support line of an orthant is defined as the intersection of the (n−1) hyperplanes

obtained by dropping the kth row in the system (3.2.a).

To drop some rows (or columns) of a matrix X, we resort to an enhanced system

of indices appropriate for entries and submatrices at the same time. If X is a matrix,

as usual, Xij represents an entry if both i and j are integers. But i may also have

special values such as “:”, “ �= k”, or “< k” to denote respectively all the rows, all

the rows but k, and the (k − 1) first rows. Likewise, j may take these special values

to denote a subset of columns. In this way, X �=k, : becomes the matrix X with the kth

row dropped, and all the columns.

The same system of indices is applied to vectors. We shall need further the

following property of submatrices:

LEMMA 5.1.

(∀k ∈ [1. . n]) (I − Δ) �= k, �= k is an M-matrix.

Proof. Two well-known properties of M-matrices underlie the proof:

A is an M-matrix ⇐⇒ (∃u > 0) Au > 0, (5.1)

A is an M-matrix =⇒ (∀i �= k) Aik ≤ 0. (5.2)

As I −Δ is an M-matrix, by (5.1), ∃u > 0 such that (I −Δ)u > 0. By (5.2), for such

u, (I − Δ) �= k, �=k(u �= k) > 0 and by (5.1) again (I − Δ) �=k, �= k is an M-matrix. �

Let us get now to the heart of the matter.

DEFINITION 5.1. Let Q be an orthant. We call the “support” line and denote by

L(k)
Q the following set:

L(k)
Q := {x | (I − Δ) �= k, :Qx = (Qb + δ) �= k}.

To prove that the minimum of |xk| is reached on L(k)
Q (see Proposition 5.1

below), we first show that every point x̃ of the solution set can be projected on
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L(k)
Q orthogonally to the axis xk, while remaining in the solution set. Then, we will

simply have to apply this property to any point that minimizes |xk|.
LEMMA 5.2. Let Q be an orthant that intersects Σ

(∀x̌ ∈ Σ ∩ Q)(∃x ∈ Σ ∩ Q ∩ L(k)
Q )(|xk| = |x̌k|).

Proof. In this proof, we need to change the kth row of a matrix. Notations can

become quickly burdensome, so we assume that k = 1 to lighten them. There is no

loss of generality since this assumption means only a reordering of variables.

Let x̌ be in Σ ∩ Q. We shall build an appropriate point x. First, put

Δ′ :=

(
0

(I − Δ) �=1, :

)
.

A well-known property of spectral radius states that

0 ≤ Δ′ ≤ Δ =⇒ ρ(Δ′) ≤ ρ(Δ).

Therefore, ρ(Δ′) < 1, and I − Δ′ is still an M-matrix. We can consider the unique x
such that

(I − Δ′)Qx =

( |x̌1|
(Qb + δ) �= 1

)
.

In this way, x already verifies (Qx)1 = |x̌1| and x ∈ L(1)
Q . We need to prove now that

x ∈ Σ ∩ Q. For that end, we first prove that |x̌| ≤ |x|.
Let us denote by M ′ the inverse of (I − Δ) �= 1, �= 1. By Lemma 5.1, M ′ is also

positive.

We have{
(Qx)1 = |x̌|1,
(Qx) �= 1 = M ′(Qb + δ) �= 1 + M ′Δ �= 1, 1|x̌|1.

Since x̌ ∈ Σ ∩ Q, it satisfies (3.2.a), i.e., (I − Δ)|x̌| ≤ Qb + δ . And in particular,

(I − Δ) �= 1, :|x̌| ≤ (Qb + δ) �= 1.

By moving x̌1 on the right side, we get (I−Δ) �= 1, �= 1|x̌| �= 1 ≤ (Qb+δ) �= 1+Δ �=1, 1|x̌|1.

And by multiplying both sides by M ′: |x̌| �= 1 ≤ M ′(Qb + δ) �= 1 + M ′Δ �=1, 1|x̌|1.

We recognize (Qx) �= 1 on the right side, so that |x̌| �= 1 ≤ (Qx) �= 1 and finally

|x̌| ≤ Qx. We have seen that x ∈ L(1)
Q , so what is left to be proven is x ∈ Σ ∩ Q. To

that end, we use the characterization given by system (3.2).

→ x satisfies (3.2.a). First, [(I − Δ)|x|]1 = |x̌|1 −
n∑

i= 1

Δ1i|xi|.

But |x̌|1 −
n∑

i= 1

Δ1i|xi| ≤ |x̌|1 −
n∑

i= 1

Δ1i|x̌|i = [(I − Δ)|x̌|]1 ≤ [Qb + δ]1.
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Second, by definition of x, [(I − Δ)|x|] �= 1 = (Qb + δ) �= 1. By gathering the two

previous relations we obtain the desired inequalities (I − Δ)|x| ≤ Qb + δ .

→ x satisfies (3.2.b). Indeed, x̌ ∈ Σ ∩ Q implies that (I + Δ)|x̌| ≥ Qb − δ , which in

turn means that (I + Δ)|x| ≥ Qb − δ .

→ x satisfies (3.2.c) because Qx ≥ |x̌| ≥ 0. �

PROPOSITION 5.1. Let Q be an orthant that intersects Σ

(∃w ∈ Σ ∩ Q ∩ L(k)
Q )(∀x ∈ Σ ∩ Q)(|wk| ≤ |xk|).

Proof. Since Σ ∩ Q is a compact set, the minimal value of |xk|, with x ∈ Σ ∩ Q,

is reached at a point x̌ of the set. By applying Lemma 5.2 to x̌, we get a point w
of the line L(k)

Q that also minimizes the kth component (in absolute value) within

Σ ∩ Q. �

At last, here is a key property of L(k)
Q related to its orientation, that we will refer

to in Section 5.3. Roughly speaking, it states that if we follow the trajectory of

L(k)
Q in the orthant Q, then all the components increase simultaneously (in absolute

value) as |xk| increases.

LEMMA 5.3. Let Q be an orthant, x ∈ L(k)
Q and x′ ∈ L(k)

Q .

(Qx)k ≤ (Qx′)k ⇐⇒ ∀i �= k (Qx)i ≤ (Qx′)i.

Proof.

x ∈ L(k)
Q ⇐⇒ (I − Δ) �= k, :Qx = (Qb + δ) �= k

⇐⇒ (I − Δ) �= k, �= k(Qx) �= k = (Qb + δ) �= k + (Qx)kΔk, :

⇐⇒ ∀i �= k, (Qx)i = (M ′(Qb + δ) �= k)i + (Qx)kM ′Δki,

where M ′ denotes the inverse of (I−Δ) �= k, �= k, which is positive by Lemma 5.1. The

last relation holds also by substituting x′ for x. Now, just remember that Δki ≥ 0. �

5.2. THE CANDIDATE POINTS

Remember that we are looking for the minimum of |xk| in the simplex defined

by system (3.2). A well-known property of linear programming states that a point

optimizing a linear criterion always lies at a vertex [3].

So far, we know that the point of Σ(k+) ∩ Q minimizing |xk| belongs to the line

L(k)
Q . This means that it is found at the intersection of L(k)

Q and one of the (2n + 1)

remaining hyperplanes of Σ(k+) ∩ Q (among those given by system (3.2)).

Yet, we can get rid of the hyperplane whose equation is (I−Δ)k, :Qx = (Qb+δ)k,

since the intersection of the latter and L(k)
Q is precisely xQ, the point maximizing

|xk| (see Section 4).
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The 2n other points are called candidates. The point y(k, i)
Q obtained by consid-

ering the hyperplane defined by the ith row of (3.2.b) is called an inner candidate,

whereas the point z(k, i)
Q obtained by the ith row of (3.2.c) (i.e., (Qx)i = 0) is called

a border candidate.

DEFINITION 5.2 (Inner candidates). Let Q be an orthant, i ∈ [1. . n], and

Λi :=

⎛
⎜⎝

(I − Δ)< k, :

(I + Δ)i, :

(I − Δ)> k, :

⎞
⎟⎠ .

If Λi is regular, we call inner candidate and denote by y(k, i)
Q the point such that

Qy(k, i)
Q := Λ−1

i

⎛
⎜⎝

(Qb + δ)< k

(Qb − δ)i

(Qb + δ)> k

⎞
⎟⎠ . (5.3)

Hence, y(k, i)
Q lies at the intersection of L(k)

Q and the hyperplane

{x | (I + Δ)i, :Qx = (Qb − δ)i}.

We define similarly the border candidate.

DEFINITION 5.3 (Border candidates). Let Q be an orthant, i ∈ [1. . n], and

Γi :=

⎛
⎜⎝

(I − Δ)< k, :

Ii, :

(I − Δ)> k, :

⎞
⎟⎠ .

If Γi is regular, we call border candidate and denote by z(k, i)
Q the point such that

Qz(k, i)
Q := Γ−1

i

⎛
⎜⎝

(Qb + δ)< k

0

(Qb + δ)> k

⎞
⎟⎠ . (5.4)

Again, z(k, i)
Q lies at the intersection of L(k)

Q and the hyperplane {x | (Qx)i = 0}.

Of course, if a hyperplane is parallel to L(k)
Q , the corresponding candidate does

not exist. This does not change the fact that the minimum is still met at some other

candidate point. Notice that the candidates y(k, k)
Q and z(k, k)

Q always exist since Λk

and Γk are regular. It means that in the “worst” case, the minimum is still found

among them.

We will show in appendix the following property (see Proposition 8.1):

∀i �= k Λi is regular ⇐⇒ Γi is regular ⇐⇒ mik �= 0.
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5.2.1. Inner Candidates

Now, the question amounts to: “For any orthant Q, can we determine the kth

component of Qy(k, i)
Q ?” The next proposition provides an answer.

PROPOSITION 5.2. Let Q be an orthant. We have:

(Qy(k, k)
Q )k = νk

⎡
⎣mkk(Qb − δ)k −

n∑
j �= k

mkj(Qb + δ)j

⎤
⎦ with νk =

1

2mkk − 1
.

And for i �= k, if mik �= 0 then

(Qy(k, i)
Q )k = αki(Qb)i +

n∑
j �= k

(mkj − mijαki)(Qb + δ)j with αki = mkk / mik.

Proof. For the sake of clarity, in the following, Di will stand for ekeT
i , i.e., for a

zero-filled matrix except for (Di)ki := 1.

We have Λi = (I − Dk)(I − Δ) + Di(I + Δ) = (I − Dk − Di)(I − Δ) + 2Di.

As noticed before, Λk is regular. And if i �= k, mik �= 0 implies by Proposition 8.1,

that Λi is regular. Thus, we can write Λ−1
i Λi = I, i.e., Λ−1

i ΛiM = M.

Then Λ−1
i [(I − Dk − Di)(I − Δ) + 2Di]M = M. And since (I − Δ)M = I, we get

Λ−1
i [(I − Dk − Di) + 2DiM] = M. Let us use the symbol λ for the entries of Λ−1.

With such relation, one can easily compute the kth row of Λ−1
i .

With i = k, we get:

• λkk(2mkk − 1) = mkk =⇒ λkk = (mkk / (2mkk − 1)) = mkkνk.

• 2mkjλkk + λkj = mkj =⇒ λkj = mkj(1 − 2λkk) = mkj(1 − 2mkkνk) = −mkjνk.

So that projection of (5.3) on the kth coordinate gives:

(Qy(k, k)
Q )k = λkk(Qb − δ)k +

n∑
j �= k

λkj(Qb + δ)j

= νk

⎡
⎣mkk(Qb − δ)k −

n∑
j �= k

mkj(Qb + δ)j

⎤
⎦ .

With i �= k, we get:

• 2λkkmik = mkk =⇒ λkk = 1 / 2(mkk / mik) = 1 / 2αki.

• 2mijλkk + λkj = mkj =⇒ λkj = mkj − (mijmkk) / mik = mkj − mijαki.

• (2mii − 1)λkk + λki = mki =⇒ λki = mki − (miimkk) / mik + 1 / 2(mkk / mik) =

mki − miiαki + 1 / 2αki.

And reasoning as before leads to:
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(Qy(k, i)
Q )k = λkk(Qb − δ)i + λki(Qb + δ)i +

n∑

j �= k, j �= i

λkj(Qb + δ)j

= (λkk + λki)(Qb)i + (λki − λkk)δi +

n∑

j �= k, j �= i

λkj(Qb + δ)j

= αki(Qb)i +

n∑

j �= k

(mkj − mijαki)(Qb + δ)j. �

Remark 5.1. In particular we have:

(Qy(k, i)
Q )k = (αki + mki − miiαki)(Qb)i +

n∑

j �= k
j �= i

(mkj − mijαki)(Qb)j + ϕ(δ),

where ϕ(δ) is an expression that does not depend on Q.

In the next corollary, we reintroduce xQ, as defined in Section 4.

COROLLARY 5.1. Let Q be an orthant. Let S be a diagonal matrix filled with
1 except for Skk := −1 (this means that (SQ) is the symmetric orthant of Q with
respect to (xk = 0)). We have:

(Qy(k, k)
Q )k = −νk

(
(SQ)x(SQ)

)
k.

Proof. Simply compare the expression obtained in Proposition 5.2 with the

definition of x(SQ) (Section 4). �

COROLLARY 5.2. Let Q be an orthant, x ∈ L(k)
Q and i ∈ [1. . n] such that mik �= 0.

(Qx)k ≥ (Qy(k, i)
Q )k =⇒ (I + Δ)i, :Qx ≥ (Qb − δ)i.

Proof. By Lemma 5.3, (Qx)k ≥ (Qy(k, i)
Q )k implies that Qx ≥ Qy(k, i)

Q . Combining

this with I + Δ ≥ 0 and (I + Δ)i, :Qy(k, i)
Q = (Qb − δ)i gives the desired result. �

5.2.2. Border Candidates

Explicit formulae for border candidates are obtained in the same way as inner

candidates, and with simpler calculus. We will be more concise.

PROPOSITION 5.3. Let Q be an orthant, i ∈ [1. . n]. If mik �= 0, then we have:

(Qz(k, i)
Q )k = (Qy(k, i)

Q )k − αki(Qb)i.
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Proof. We have Γi = (I −Dk)(I −Δ) + Di, so that Γ−1
i ((I −Dk) + DiM) = M. Let

us use γ as the symbol for the entries of Γ−1
i . We deduce that γkk = mkk / mik = αki.

And ∀j �= k, γkkmij + γkj = mkj, i.e., γkj = mkj − (mkkmij) / mik. Finally we have

(Qz(k, i)
Q )k =

∑

j �= k
(mkj − mijαki)(Qb + δ)j = (Qy(k, i)

Q )k − αki(Qb)i. �

5.3. LOCAL MINIMA

Now that we have well characterized inner and border candidates, it will be more

convenient to consider a unique set of (possibly 2n) candidates. Define:

∀i ∈ [1. . n], mik �= 0,

⎧
⎨

⎩

c(k, i)
Q := y(k, i)

Q ,

c(k, n+i)
Q := z(k, i)

Q .

As noticed before, y(k, k)
Q and z(k, k)

Q always belong to this set.

We define also an appropriate set of indices:

I :=
⋃

i∈[1. . n], mik �= 0

{i, (n + i)}.

LEMMA 5.4 (Local minimum). Let Q be an orthant.

Σ ∩ Q �= ∅ =⇒ inf
x ∈Σ ∩ Q

|xk| = max
i∈I

(Qc(k, i)
Q )k.

Proof. Let c be any candidate, and assume it exists x ∈ L(k)
Q such that (Qx)k <

(Qc)k. We will prove that x �∈ Σ ∩ Q. Then, if Σ ∩ Q �= ∅, infx ∈Σ ∩ Q |xk| is obtained

by maximizing (Qc)k, where c ranges over all the candidate points. We prove now

x �∈ Σ ∩ Q. First, (Qx)k < (Qc)k implies Qx ≤ Qc, by virtue of Lemma 5.3. Now,

if c is a border candidate, there exists i such that (Qc)i = 0 (see Definition 5.3).

As Qx ≤ Qc implies (Qx)i ≤ (Qc)i, then (Qx)i ≤ 0. But (Qx)i = 0 would mean

that x = c,� contradicting (Qx)k < (Qc)k. Therefore, (Qx)i < 0 and x �∈ Σ ∩ Q.

Similarly, if c is an inner candidate, there exists i such that (I + Δ)i, :Qc = (Qb − δ)i

(see Definition 5.2). Qx ≤ Qc, implies (I + Δ)i, :Qx ≤ (I + Δ)i, :Qc, therefore

(I + Δ)i, :Qx ≤ (Qb − δ)i, and the inequality is actually strict since x �= c.�� Again,

x �∈ Σ ∩ Q. �

5.4. GLOBAL MINIMA

In the previous section, we gave a way to compute the minimum of |xk| among all

the candidates for a fixed orthant. Here, we do an orthogonal operation, i.e., we

� L(k)

Q is not parallel to (xi = 0) since i ∈ I means that Γi is regular.
�� L(k)

Q is not parallel to ((I + Δ)i,:Qx = (Qb − δ)i) since i ∈ I means that Λi is regular.
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compute the minimum of a fixed candidate (defined by a given matrix Λi or Γi)
�

among all the orthants.

Define

O+ := {Q orthant of R n | Qkk = +1},
O− := {Q orthant of R n | Qkk = −1}.

LEMMA 5.5 (Best orthant for candidates).

∀i ∈ I min
Q ∈O+

(Qc(k, i)
Q )k = (Q(k+)c(k, i)

Q(k+) )k

More precisely, ∀i ∈ [1, n] such that i �= k and mik �= 0

(i) min
Q ∈O+

(Qy(k, i)
Q )k = θki (see Section 2),

(ii) min
Q ∈O+

(Qz(k, i)
Q )k = θki − αki|bi|

and

(iii) min
Q ∈O+

(Qy(k, k)
Q )k = νkx∼ k,

(iv) min
Q ∈O+

(Qz(k, k)
Q )k = 0.

Proof. For any candidate c(k, i)
Q , Qb−→(Qc(k, i)

Q )k is an affine form (see Remark 5.1

after Proposition 5.2) with, except for (Qb)k, negative coefficients (see Propo-

sition 8.2). Therefore, the minimum in O+ is reached when all components of

(Qb) �= k are maximized, i.e., when Q = Q(k+). More precisely:

(i) and (ii). By Propositions 5.2 and 5.3, and by the definition of θki:

θki = (Q(k+)y(k, i)
Q(k+))k and θki − αki|bi| = (Q(k+)z(k, i)

Q(k+) )k.

(iii) min
Q ∈O+

Qy(k, k)
Q = min

Q ∈O+
−νk((SQ)x(SQ))k by Corollary 5.1

= −νk maxQ ∈O+((SQ)x(SQ))k because νk ≥ 0 (see [15])

= −νk maxQ ∈O−(QxQ)k

= νkx∼ k by Corollary 4.2.

(iv) is obvious. �

We are ready now to put all the things together and provide the global minimum

for |xk| in Σ(k+).

PROPOSITION 5.4.

Σ(k+) �= ∅ =⇒ min
x ∈Σ(k+)

xk = max{0, νkx∼ k, x̂k}.

� We have to point out that Λi or Γi do not depend on the orthant. In other words, for any orthant

Q and Q′, y(k,i)
Q exists iff y(k,i)

Q′ exists. Hence, statement of Lemma 5.5 is coherent.
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Proof. Assume Σ(k+) �= ∅. A familiar “minimax” property states that

max
i∈I

min
Q ∈O+

(Qc(k, i)
Q )k ≤ min

Q ∈O+
max
i∈I

(Qc(k, i)
Q )k. (5.5)

But, thanks to Lemma 5.4:

min
Q ∈O+

max
i∈I

(Qc(k, i)
Q )k = min

Q ∈O+
min

x ∈Σ ∩ Q
|xk| = min

x ∈Σ(k+)
|xk| = min

x ∈Σ(k+)
xk. (5.6)

And thanks to Lemma 5.5:

max
i∈I

min
Q ∈O+

(Qc(k, i)
Q )k = max

i∈I
(Q(k+)c(k, i)

Q(k+) )k. (5.7)

Combining (5.5), (5.6), and (5.7), we get:

max
i∈I

(Q(k+)c(k, i)
Q(k+) )k ≤ min

x ∈Σ(k+)
xk. (5.8)

Now, by Proposition 4.1, Σ(k+) �= ∅ =⇒ Q(k+) �= ∅, and by Lemma 5.4,

max
i∈I

(Q(k+)c(k, i)
Q(k+) )k = min

x ∈Σ ∩ Q(k+)
xk. (5.9)

Combining (5.8) and (5.9), we get:

max
i∈I

(Q(k+)c(k, i)
Q(k+) )k = min

x ∈Σ(k+)
xk. (5.10)

Thanks to Lemma 5.5 again we have:

max
i∈I

(Q(k+)c(k, i)
Q(k+) )k = max{max

i∈I
θki, max

i∈I
(θki − αki|bi|), νkx∼ k, 0}.

Where I := {i ∈ [1. . n], i �= k | mik �= 0}. And since ∀i ∈ I , θki − αki|bi| ≤ θki

(because αki ≥ 0), we get:

max
i∈I

(Q(k+)c(k, i)
Q(k+) )k = max{0, νkx∼ k, x̂k}. (5.11)

Finally, combining (5.10) and (5.11) leads to:

max{0, νkx∼ k, x̂k} = min
x ∈Σ(k+)

xk. �

COROLLARY 5.3.

Σ(k−) �= ∅ =⇒ max
x ∈Σ(k−)

xk = min{0, νkx̃k, −x̂k}.

Proof. Consider A(−x) = −b and apply Proposition 5.4. �

We finish this section by a simple trick. One can notice that 0 does not appear as

a candidate in the “else” statements of the scheme given in Section 2. Its removal is
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justified by the following fact: as soon as 0 belongs to [xk, xk] (the kth component

of �Σ), we have

(�Σ) ∩ Σ(k+) �= ∅ and (�Σ) ∩ Σ(k−) �= ∅,

so that [xk, xk] = [x∼ k, x̃k]. Consequently, 0 can be discarded in any other case.

6. Existence of Solutions

So far, we have proven that the bounds of �Σ(k+) we compute are correct. But

we have always assumed that Σ(k+) �= ∅. In this section, we show that (x̃k ≥
max{0, νkx∼ k, x̂k}) is a sufficient condition for solutions to exist in Σ(k+), provid-

ing that either this condition or its negative counterpart is also verified for all the

other components.

LEMMA 6.1. ∀k ∈ [1. . n],

If bk ≥ 0 then x̃k < max{0, νkx∼ k} =⇒ x∼ k > 0

else x∼ k > min{0, νkx̃k} =⇒ x̃k < 0

Proof. First, from the expressions of x̃k and x∼ k follows x∼ k = −x̃k + 2mkkbk,

whatever the sign of bk is.

Assume bk ≥ 0. If x̃k < 0 then−x̃k > 0 so x∼ k > 0. If x̃k < νkx∼ k then−x̃k > −νkx∼ k

so x∼ k > −νkx∼ k + 2mkkbk. It follows that (1 + νk)x∼ k > 2mkkbk, which again means

that x∼ k > 0 (mkk ≥ 0). Hence x̃k < max{0, νkx∼ k} =⇒ x∼ k > 0.

Assume now bk < 0. If x∼ k > 0 then −x∼ k < 0 so x̃k < 0. If x∼ k > νkx̃k then

−x̃k + 2mkkbk > νkx̃k. It follows that (1 + νk)x̃k < 2mkkbk, which again means that

x̃k < 0. Hence x∼ k > max{0, νkx̃k} =⇒ x̃k < 0. �

Before giving a sufficient condition for the non-emptiness of Σ(k+), we have to

introduce an intermediate result on the non-emptiness of Σ ∩ Q∗ (definition of Q∗
is given in Section 4).

LEMMA 6.2.

Σ ∩ Q∗ �= ∅ ⇐⇒ (∀k ∈ [1. . n]) x̃k ≥ max{0, νkx∼ k}
or

x∼ k ≤ min{0, νkx̃k}.

Proof. For the forward implication, assume Σ ∩ Q∗ �= ∅. If Q∗
kk = 1, then Σ(k+)

is non empty. It follows by Proposition 5.4 that both 0 and νkx∼ k are lower than

min{xk , x ∈ Σ(k+)}, and by Corollary 4.1 that max{xk, x ∈ Σ(k+)} is x̃k. Hence,

x̃k ≥ max{0, νkx∼ k}. If Q∗
kk = −1, a similar argument leads to x∼ k ≤ min{0, νkx̃k}.
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For the backward implication, we prove that xQ∗ ∈ Σ. First, xQ∗ satisfies (3.2.a)

by definition. Now, let k be in [1. . n], and remind that x∗ stands for Q∗xQ∗ (see

Section 4). If bk ≥ 0 then x∗k = x̃k. On the one hand, x̃k ≥ 0 (because x̃k < 0

would imply x∼ k > 0 by Lemma 6.1), so x∗k ≥ 0; on the other hand, x̃k ≥ νkx∼ k (for

the same reason). By Lemma 5.5, νkx∼ k = (Q∗y(k, k)
Q∗ )k (since Q∗ = Q(k+)), so we

have x∗k ≥ (Q∗y(k, k)
Q∗ )k which implies (I + Δ)k, :x∗ ≥ (Q∗b − δ)k, by Corollary 5.2.

If bk ≤ 0, x∗k = −x∼ k. Then x∼ k ≤ 0 implies x∗k ≥ 0 and x∼ k ≤ νkx̃k implies

−x∼ k ≥ (Q∗y(k, k)
Q∗ )k. We conclude in the same way. We have proven that x∗k ≥ 0

and (I + Δ)k, :x∗ ≥ (Q∗b − δ)k for any k ∈ [1. . n]. Hence, xQ∗ satisfies (3.2.b) and

(3.2.c). Finally xQ∗ ∈ Σ, and Σ ∩ Q∗ �= ∅. �

We are now in position to provide a sufficient condition for Σ(k+) to be non

empty.

PROPOSITION 6.1.

Σ(k+) �= ∅ ⇐⇒
{

x̃k ≥ max{0, νkx∼ k, x̂k},
(∀i �= k) x̃i ≥ max{0, νix∼ i} or x∼ i ≤ min{0, νix̃i}.

Proof. The forward implication is easy to obtain by adapting the first part of

the previous proposition proof. For the backward implication, we shall prove that

xQ(k+) satisfies system (3.2). For readability, put t := Q(k+)xQ(k+) and notice that

xQ∗ ∈ Σ ∩ Q∗ by Lemma 6.2. First, xQ(k+) satisfies (3.2.a) by definition. Next,

∀i �= k, ti = x∗i and x∗i ≥ 0 since xQ∗ ∈ Σ ∩ Q∗. Further, tk = x̃k by Corollary 4.1

and x̃k ≥ 0 by hypothesis. Hence t ≥ 0, i.e., xQ(k+) satisfies (3.2.c). It remains to

proof that xQ(k+) satisfies (3.2.b):

• Consider i �= k.

Assume first mik �= 0. Then, the inner candidate y(k, i)
Q(k+) exists (see Proposition 8.1).

We have tk ≥ x̂k by hypothesis, and x̂k ≥ θki = (Q(k+)y(k, i)
Q(k+) )k by definition. Then,

by Corollary 5.2, we obtain (I + Δ)i, :t ≥ (Q(k+)b − δ)i.

Assume now mik = 0. We can notice that the expressions for (Q(k+)y(i, i)
Q(k+) )i and

(Q∗y(i, i)
Q∗ )i (see Proposition 5.2) differ only by the term involving respectively

Q(k+)
kk and Q∗

kk. But this term has a factor mik, so it is null in both cases. Therefore,

these expressions coincide. Next, ti = x∗i and x∗i ≥ (Q∗y(i, i)
Q∗ )i since xQ∗ ∈

Σ ∩ Q∗. So ti ≥ (Q(k+)y(i, i)
Q(k+))i, and we can apply Corollary 5.2. We find again

(I + Δ)i, :t ≥ (Q(k+)b − δ)i.

• We have tk ≥ νkx∼ k by hypothesis, and νkx∼ k = (Q(k+)y(k, k)

Q(k+) ) by Lemma 5.5. Hence,

still by Corollary 5.2, we find (I + Δ)k, :t ≥ (Q(k+)b − δ)k. �

The negative counterpart of the previous proposition is:
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Table 1.

k numerical result formal result Gauss-Seidel Krawczyk

1 [4.71053, 11.8576] [θ13 , x̃1] [−2.96871, 11.8576] [−3.8576, 11.8576]

2 [−9.84177, −6.09412] [x∼2 ,−θ25] [−9.84177, −5.10549] [−9.84177, −4.15830]

3 [−1.36076, 4.27215] [x∼3 , x̃3] [−2.04993, 4.27215] [−2.27215, 4.27215]

4 [8.09474, 15.81013] [θ43 , x̃4] [2.51899, 15.81013] [1.18987, 15.81013]

5 [−6.7943,−2.53322] [x∼5 , ν5x̃5] [−6.7943, −1.71375] [−6.7943, −1.2057]

COROLLARY 6.1.

Σ(k−) �= ∅ ⇐⇒
{

x∼ k ≤ min{0, νkx̃k,−x̂k},

(∀i �= k) x̃i ≥ max{0, νix∼ i} or x∼ i ≤ min{0, νix̃i}.

7. Application

Let us first check the validity of our algorithm on one example, and compare the

result to what other methods yield.

Take Ax = b, with A = I ± Δ and:

Δ =

⎛
⎜⎜⎜⎜⎝

.1 .1 .1 .1 .1

.1 .2 .1 .1 .1

.2 .3 .1 .2 .2

.1 .4 .1 .1 .1

.1 .5 .1 .1 .1

⎞
⎟⎟⎟⎟⎠ ,

b = ([1, 7] [−10,−4] [−6, 8] [8, 9] [−10, 2])T .

The vector of quantifiers for b being:

(∃, ∀, ∀, ∀, ∀)T .

In Table 1, for k = 1. . 5, we show the result obtained for the kth component of �Σ.

In the second column, the bounds are given. In the third column, we write which

candidates form these bounds.

So far that we know, the other options for computing an outer estimation of

AE-solution sets are the generalized Gauss-Seidel iteration [6], [16], [18], or a

Krawczyk-like iteration for AE-solution sets [16], [19]. Results obtained via the

latters appear in the two next columns.

We also determined �Σ with the 25 simplexes derived from Proposition 3.2,

thanks to a Maple program. As expected, each bound obtained via our method

coincides with the corresponding one given by Maple.

We see in the “formal result” column of the table that any candidate can be the

“good” one, so it seems unlikely that a simpler formula than ours could be found

for �Σ.
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Now, there is a motivation of our work drawn on practical matters.

Recently, Goldsztejn [4] provided a new branch-and-prune algorithm for paving

the solution space of non-linear systems under parameter uncertainty. It combines

a test for inner boxes and a special filtering procedure, that takes into account

quantifiers associated with parameters. In the last stage of this procedure, there is a

need to approximate outwardly a right-quantified solution set, as sharp as possible. It

would require too much room to give insight into the reasons why a right-quantified

solution set arises. The interested reader may refer to [4] for details.

8. Discussion

We have presented a new algorithm that gives exact bounds for the interval hull of

right-quantified solution sets, along with a step-by-step proof.

It is arguable whether the class of right-quantified solution sets is not restrictive.

It is so, indeed, from an academic standpoint. However, by tackling right-quantified

solution sets instead of united solution sets, the overall number of possibilities for

any bound has gone up from 2 to n + 1. The difficulty has increased significantly

as it is, and AE-solution sets with arbitrary quantifiers on the matrix coefficients

are much more inextricable! In any case, we do not believe that the Hansen-Bliek

method can be adapted to all the AE-solution sets, merely because it strongly relies

on the positivity of Δ = rad (A).

Furthermore, from a practical standpoint, right-quantified solution sets have

turned out to be the cornerstone of an algorithm for efficiently narrowing domains

in the framework of non-linear square systems with quantified parameters.

Improvements on our work would comprise evaluating the influence of our

method on the performances of Goldsztejn’s algorithm, returning the hull of each

connected components of the right-quantified solution set, or dealing with some

specific quantified matrices, e.g., with universally quantifiers arranged column

wise.

Appendix

In all this appendix, we fix i �= k. Define the matrix Δ′ as follows:

Δ′ := (I − Dk + Di)Δ with Dk = ekeT
k and Di = ekeT

i .

Δ′ is a copy of Δ except that the ith row is duplicated in the kth row. Now, as (I −Δ)

is an M-matrix, there exists u > 0 such that (I−Δ)u > 0. Since each row of I−Δ′ is

also a row of I −Δ, we have (I −Δ′)u > 0 and therefore I −Δ′ is still an M-matrix.

Now, put

M ′ := (I − Δ′)−1.

LEMMA 8.1.

m′kk = m′ik + 1.
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Proof. We have (I − Δ′)M ′ = I, so M ′ = I + Δ′M ′ and M ′ − I = Δ′M ′. Now

Δ′k, : = Δ′i, : =⇒ (M ′ − I)k, : = (M ′ − I)i, :, and, in particular, m′kk = m′ik + 1. �

LEMMA 8.2.

m′kk =
mkk

mkk − mik
,

m′ki = mki − mkk
1 + mki − mii

mkk − mik
,

∀j �= k, j �= i, m′kj = mkj − mkk
mkj − mij

mkk − mik
.

Proof. We have:

M ′(I − Δ′) = I ⇐⇒ M ′
(
I − (I − Dk + Di)Δ

)
= I

⇐⇒ M ′
(
I − Δ + (Dk − Di)Δ

)
M = M

⇐⇒ M ′
(
(I − Δ) − (Dk − DkΔ) + (Di − DiΔ) + (Dk − Di)

)
M

= M

⇐⇒ M ′
(
I − Dk + Di + (Dk − Di)M

)
= M.

For instance, with k = 1, the latter relation can be rewritten:

M ′

⎛

⎜
⎜
⎝

(m11 − mi1) (m12 − mi2) · · · (1 + m1i − mii) · · · (m1n − min)

0n−1 In−1

⎞

⎟
⎟
⎠ = M.

With such relation, entries of M ′ can be computed directly. We get for instance

m′kk(mkk − mik) = mkk which means that m′kk = mkk / (mkk − mik). The other entries

come similarly, so we skip the details. �

PROPOSITION 8.1 Existence of candidates.

Λi is regular ⇐⇒ Γi is regular ⇐⇒ m′kk �= 1 ⇐⇒ mik �= 0.

Proof. We shall proof that Ker(Λi) = {0} ⇐⇒ mik �= 0.

First, we transform Λi in this way:

Λi = (I − Dk)(I − Δ) + Di(I + Δ) =
(
I − (I − Dk − Di)Δ

)
+ Di − Dk.

Define (as in Corollary 5.1) S := I − 2Dk. Then,

SΛi =
(
S − S(I − Dk − Di)Δ

)
+ S(Di − Dk)

=
(
S − (I − Dk + Di)Δ

)
+ (Dk − Di)

(because S(I − Dk − Di) = I − Dk + Di and S(Di − Dk) = Dk − Di)

=
(
I − 2Dk − (I − Dk + Di)Δ

)
+ Dk − Di (by definition of S)

=
(
I − (I − Dk + Di)Δ

)− Dk − Di

= (I − Δ′) − Dk − Di.
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Λix = 0 ⇐⇒ SΛix = 0 (because S is a regular diagonal matrix)

⇐⇒ (I − Δ′)x − (Dk + Di)x = 0

⇐⇒ x = M ′(Dk + Di)x

⇐⇒ ∀j ∈ [1. . n] xj = m′jk(xk + xi).

The latter relation yields xk = m′kk(xk + xi) and xi = m′ik(xk + xi). Hence, xi =

(m′kk − 1)(xk + xi) = xk − xk − xi = −xi i.e., xi = 0. Finally,

Λix = 0 ⇐⇒ (xi = 0 and ∀j �= i, xj = m′jkxk). (8.1)

Clearly m′kk = 1 implies that ∀xk ∈ R the vector (m′
1kxk , …, 0, …, m′nkxk) satisfies the

right side of (8.1), so the left side, and then dim(Ker(Λi)) > 0.

Conversely, if m′kk �= 1, one can see that only 0n satisfies the right side of (8.1).

Therefore, Ker(Λi) = {0} ⇐⇒ m′kk �= 1. With Lemma 8.2 we have

m′kk = 1 ⇐⇒ mkk

mkk − mik
= 1 ⇐⇒ mik = 0.

Summing up:

Λi regular ⇐⇒ Ker(Λi) = {0} ⇐⇒ m′kk �= 1 ⇐⇒ mik �= 0.

The proof is similar for Γi. We have

Γi = (I − Dk)(I − Δ) + Di = I − (I − Dk)Δ + Di − Dk.

If we multiply it by the regular matrix S = I − 2Dk + Di we fall back again into

SΓi = (I − Δ′) − Dk − Di,

using the fact that S(I − Dk) = I − Dk + Di and S(Di − Dk) = Dk − Di. �

PROPOSITION 8.2. If mik �= 0, Then

(i) αki + mki − miiαki ≤ 0,
(ii) ∀j �= k, j �= i, mkj − mijαki ≤ 0.

Proof. (i). We have

αki + mki − miiαki =
mkk

mik
+ mki − miimkk

mik
= mki + mkk

1 − mii

mik
.

Let us calculate (1 − m′kk)(αki + mki − miiαki). We find(
1 − mkk

mkk − mik

)(
mki + mkk

1 − mii

mik

)
,

and, by developing,

mki + mkk

(
1 − mii

mik
− mki + mkk(1 − mii) / mik

mkk − mik

)
,



EXTENSION OF THE HANSEN-BLIEK METHOD... 349

i.e.,

mki − mkk

(
mki + (1 − mii)

mkk − mik

)
,

which is m′ki. By Proposition 8.1, mik �= 0 means also m′kk �= 1. By virtue of Lem-

ma 8.1, m′kk ≥ 1; hence, m′kk > 1. Then αki + mki − miiαki = m′ki / (1 − m′kk). And as

m′ki ≥ 0 and m′kk > 1, we obtain αki + mki − miiαki ≤ 0. Similarly, if we calculate

(1 − m′kk)(mkj − mijαki), we get m′kj and conclude in the same way. �
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