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Abstract Three rejection tests for multi-objective optimization problems based on first
order optimality conditions are proposed. These tests can certify that a box does not contain
any local minimizer, and thus it can be excluded from the search process. They generalize
previously proposed rejection tests in several regards: Their scope include inequality and
equality constrained smooth or nonsmooth multiple objective problems. Reported experi-
ments show that they allow quite efficiently removing the cluster effect in mono-objective
and multi-objective problems, which is one of the key issues in continuous global determin-
istic optimization.

Keywords Multi-objective deterministic global optimization · First order optimality
conditions · Interval analysis · Branch and bound algorithm · Cluster effect

1 Introduction

We consider the nonlinear multi-objective problem of minimizing f (x) subject to the con-
straints g(x) ≤ 0 and h(x) = 0, where f : R

n → R
m, g : R

n → R
p and h : R

n → R
q

are Lipschitz continuous near every point of R
n (inequalities holding component wise). First

order optimality conditions, like Karush–John or Karush–Kuhn–Tucker conditions (see e.g.
[4,26,29,36]), play a key role in the theory and practice of solving such nonlinear problems
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by standard numerical analysis methods. Karush–John conditions state that for any local
Pareto optimal (or efficient, or non-dominated) solutions x∗ of the previous problem, there
exist multipliers 0 ≤ λ ∈ R

m, 0 ≤ r ∈ R
p and s ∈ R

q not all 0 such that

∂ f (x∗) λ + ∂g(x∗) r + ∂h(x∗) s � 0 (1)

(∀1 ≤ i ≤ p) ri gi (x∗) = 0 (2)

(∀1 ≤ i ≤ q) hi (x∗) = 0, (3)

where ∂ f is the generalized gradient of f .1 See e.g. [4] for the definition of generalized
gradients and related first order conditions. A normalization equation can be added since
multipliers are not all 0, e.g.

∑

1≤i≤m

λi +
∑

1≤i≤p

ri +
∑

1≤i≤q

s2
i = 1. (4)

In the case where functions are differentiable, so generalized gradients coincide with
gradients and (1) becomes an equality, the first order conditions (1)–(4) give rise to a system
of n + m + p + q unknowns and n + p + q + 1 equations. Therefore, generically its solution
set is a manifold of dimension m − 1. This matches the generic dimension of the Pareto
front of such a problem (noteworthily in the case of mono-objective optimization, Pareto
optimality is equivalent to the usual order between reals, and the solution set is generically
zero dimensional).

In the context of interval branch and bound algorithms, first order conditions allow reject-
ing parts of the search space that are difficult to reject with other techniques (in particular
when exploring the region close to the global optimum where the so-called cluster effect2

dramatically slows the search, see the discussions about the cluster effect in [6,34], and
in Sect. 5.1 below). Their importance in branch and bound algorithm dedicated to mono-
objective optimization is well-known, where the well-constrained system of Eqs. (1)–(4) is
solved using the interval Newton [12,18,24] or other techniques coming from numerical
constraint programming [11]. This presents the drawbacks of solving a system with dimen-
sion higher than the original problem, one additional variable for each multiplier, and of
requiring sharp initial domains for multipliers. This is balanced by the very sharp enclosure
of computed local or global optima.

Subdivision methods (among which interval based branch and bound algorithms) recently
started to be developed for solving nonlinear multi-objective problems [2,3,14,15,22,23,31,
38,39]. Techniques related to first order conditions are used in [22,23,31] to reject parts of
the search space that contain no Pareto optimal solution. As in the context of mono-objective
optimization, the system (1)–(4) can be solved using constraints techniques. However, the
additional difficulty is that the system (1)–(4) is under-constrained in the multi-objective
case, while interval techniques like the interval Newton are efficient only for well-constrained
systems: A componentwise Newton operator is used to solve (1)–(4) in [23] but this operator is
much less efficient than the traditional Newton operator, which benefits from preconditioning
techniques to tackle globally the system of equations.

Rejection tests like the one proposed in [22,31] do not solve explicitly the system (1)–(4)
but instead use it to prove that a given region does not contain any local optimum. The main

1 In the case of vector valued functions f = ( f1, . . . , fm ), ∂ f is a matrix whose columns are ∂ fi , so
∂ f (x∗) λ = ∑

i λi ∂ fi (x∗).
2 Clusters of small boxes appear around local or global minimizers due to excessive splitting and failure to
remove the resulting boxes because too close to these minimizers. This behavior is generic and one of the
main issues in deterministic global optimization.
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disadvantage of such test is that they are useless when applied to domains that contain a local
optimum, while solving (1)–(4) allows potentially reducing such a domain, hence providing a
sharp enclosure of the contained optimum, without any additional subdivision. Nevertheless,
rejection tests still allow efficiently tackling the cluster effect. Since they are computationally
much cheaper than solving (1)–(4) and easy to implement, they can be used as a preliminary
test before solving explicitly the system. They are even more important in the context of
multi-objective optimization where traditional techniques for solving (1)–(4) are inefficient.

In this paper, three rejection tests based on first order necessary conditions are proposed.
While they are more general and powerful than previously proposed tests [22,31], they are
very simple and hence easily included in any branch and bound algorithm dedicated to mono
or multi-objective optimization. Section 2 recalls the basics of interval analysis that will be
used in Sect. 3 to develop the proposed rejection test. An analysis of related works is given in
Sect. 4. Finally Sect. 5 reports experiments that show the usefulness of the proposed rejection
tests for decreasing the cluster effect.

2 Interval analysis

Interval analysis is a branch of numerical analysis that was born in the 1960s. It consists
of computing with intervals of reals instead of reals, providing a framework for handling
uncertainties and verified computations (see e.g. [1,27,28] and [17] for a survey). Interval
analysis is a key ingredient for numerical constraint programming (see e.g. [16]) and global
optimization (see e.g. [12,19]).

An interval is a closed connected subset of R, the set of intervals being denoted by IR

(which includes the empty set as well as unbounded intervals). Intervals are denoted by
boldface symbols, e.g. x ⊆ R. There are two equivalent ways of defining interval vectors,
the set of such n dimensional interval vectors being denoted by IR

n . On the one hand, given
two vectors x ≤ x ∈ R

n (where the inequality is defined componentwise), an interval of
vectors is obtained by considering x := {x ∈ R

n : x ≤ x ≤ x}. On the other hand,
given intervals xi ∈ IR for i ∈ {1, . . . , n}, a vector of intervals is obtained by considering
x := {x ∈ R

n : ∀i ∈ {1, . . . , n}, xi ∈ xi }. These two definitions are obviously equivalent
following the notational convention x = (xi ), x = (xi ) and [xi ] = [xi , xi ], and will be used
interchangeably. Interval matrices are defined similarly to interval vectors as either intervals
of matrices or matrices of intervals, the set of n×m interval matrices being denoted by IR

n×m .
A real number x ∈ R (respectively a real vector x ∈ R

n or a real matrix A ∈ R
n×m) will

be identified with the degenerate interval [x, x] (respectively a degenerated interval vector
[x, x] or a degenerated interval matrix [A, A]).

Operations ◦ ∈ {+,×,−,÷} are extended to intervals in the following way: x ◦ y :=
{x ◦ y : x ∈ x, y ∈ y} (which is an interval since these functions are continuous). The division
is defined for intervals [y, y] that do not contain zero. Unary elementary functions f (x) like
exp(x), ln(x), sin(x), etc., are also extended to intervals similarly: f (x) = { f (x) : x ∈ x}.
All these elementary interval extensions form the interval arithmetic (IA). As real numbers
are identified to degenerated intervals, the IA actually generalizes the real arithmetic, and
mixed operations like 1+[1, 2] = [2, 3] are interpreted as interval operations, e.g. in this case
[1, 1] + [1, 2] = [2, 3]. An interval function f : IR

n −→ IR
m is an interval extension of the

real function f : R
n −→ R

m if for all x ∈ IR
n we have f(x) ⊇ { f (x) : x ∈ x}. Thus interval

extensions allow computing enclosures of real functions range over boxes. So called natural
interval extensions of a function are obtained by evaluating an expression of this function for
interval arguments using the IA. In particular when every variable has one unique occurrence
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in the function’s expression the natural interval extension is optimal, i.e. it computes the
exact function range. However, when a function expression has several occurrences of some
variable, its interval evaluation may be pessimistic. The pessimism of interval evaluation is
one of the critical issue to be tackled when applying interval analysis. Finally, interval vectors
and matrices arithmetic operations are also extended to intervals using IA, e.g. A x = y with
yi = ∑

k Aikxk with the enclosure property y ⊇ {Ax : A ∈ A, x ∈ x} (note that since the
expression of yi contains only one occurrence of each involved interval, y is actually the
smallest interval vector satisfying this enclosure). Finally, given A ∈ IR

n×m and b ∈ IR
n ,

the united solution set {x ∈ R
m : ∃A ∈ A, ∃b ∈ b, Ax = b} is denoted by Σ(A, b) and is

often called an interval linear system of equations.
Interval evaluations of the function derivatives or gradients are of particular interest in the

present paper. Such interval evaluations can be performed whenever an explicit expression
of the derivatives is available, or using automatic differentiation with IA [25,28,33]. Subgra-
dients [4] are convex hulls of sets of representative gradients, and can also be enclosed inside
interval evaluations. For example, in case the function expression contains some absolute
value, the following rule can be used for enclosing its generalized gradient: ∂abs(x) = −1
if x ≤ 0, ∂abs(x) = 1 if x ≥ 0 and ∂abs(x) = [−1, 1] otherwise (see [28] for details).
Rounded computations As real numbers are approximately represented by floating point
numbers [9], the IA cannot match the real definitions of interval extensions exactly. In order
to preserve the inclusion property, the IA has to be implemented using an outward rounding.
For example, the exact definition of IA is [1, 3]/[10, 10] = [0.1, 0.3], but both 0.1 and 0.3
cannot be exactly represented with standard floating point numbers. Therefore, the computed
result will be [0.1−, 0.3+] where 0.1− (respectively 0.3+) is a floating point number smaller
than 0.1 (respectively greater than 0.3). We expect actually the greatest floating point number
smaller than 0.1 and the smallest floating point number >0.3 which is often achieved by IA
implementations. Among numerous implementations of IA, we can cite the C/C++ libraries
PROFIL/BIAS [20] and Gaol [10], the Matlab toolbox INTLAB [33] and Mathematica [41].
The developments presented in the rest of the paper use the ideal real IA. The algorithms are
finally implemented using outwardly rounded floating point IA.

3 Rejection tests based on first order conditions

Given a box x ∈ IR
n , three rejection tests are proposed that allow proving that this box does

not contain any local minimum, and hence needs not to be explored anymore by the branch
and bound algorithm. Inactive inequality constraints don’t play any role in optimality check.
It is therefore critical to identify them before applying any test (see Example 1 in Sect. 3.1).
An inequality constraint gi (x) ≤ 0 is said active inside x if and only if there exists x ∈ x
such that gi (x) = 0. Some interval extensions gi for each gi allows identifying rigorously
inequality constraints that are inactive inside x, their indices being denoted by

I (x) := {i ∈ N : 1 ≤ i ≤ p ∧ 0 /∈ gi (x)}. (5)

Its complement

A(x) := {i ∈ N : 1 ≤ i ≤ p ∧ 0 ∈ gi (x)} (6)
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contains indices of inequality constraints that are potentially3 active inside x, the number of
such constraint being denoted by p•. In the following, ∂f(x) ∈ IR

n×m, ∂g•(x) ∈ IR
n×p•

and ∂h(x) ∈ IR
n×q are some interval enclosure over the box x of the generalized gradi-

ents objectives, potentially active inequality constraints and equality constraints respectively.
Also, G(x) ∈ IR

n×(m+p•+q) is the interval matrix made of all these interval vectors:

G(x) :=
(
∂f(x) | ∂g•(x) |∂h(x)

)
. (7)

Remark 1 When g includes bound constraints, some specific treatment may turn out to be
more efficient than simply include them in G(x) (e.g. a pivoting strategy can start using this
bound constraint gradient, see also Remark 3 in Sect. 4.1).

3.1 Full column rank test

Theorem 1 If G(x) is full column rank then x contains no local optimum.

Proof Consider an arbitrary x ∈ x and some 0 ≤ λ ∈ R
m, 0 ≤ r ∈ R

p and s ∈ R
q

satisfying (1)–(3). For i ∈ I (x), 0 /∈ gi (x) so gi (x) �= 0 and hence (2) entails ri = 0.
Therefore, (1) becomes

∂ f (x) λ + ∂g•(x) r• + ∂h(x) s � 0, (8)

where ∂g•(x) ∈ R
n×p• and r• ∈ R

p• are restrictions to potentially active inequality con-
straints. Now, (8) implies that there exists (u|v|w) ∈ (

∂ f (x)|∂g•(x)|∂h(x)
) ⊆ G(x) such

that uλ+vr•+ws = 0. Since G(x) is fullrank, so is (u|v|w), and therefore uλ+vr•+ws = 0
implies that all multipliers are zero, thus contradicting the Karush–John conditions. There-
fore, x is eventually not a local optimum. ��
Remark 2 Note that G(x) is full column rank implies that

(
∂g•(x) | ∂h(x)

)
is also full column

rank. Therefore, Theorem 1 can reject a box x only in the case where the constraints satisfy
the linear independence constraint qualification in this box.

Checking if an interval matrix is full column rank is NP-hard (since checking the regularity
of square interval matrices is NP-hard, see e.g. [30] and references therein). However, when
the interval entries of the matrix are thin enough (which is generally the case when the cluster
effect appears), two sufficient conditions can be used to check if G(x) is full column rank: The
interval Gauss elimination (see e.g. [8,28]) and checking strict diagonal dominance of CG(x),
where C ∈ R

(m+p•+q)×n is e.g. some approximate midpoint pseudo-inverse preconditioner.
Both methods complexity is cubic, while our experiments seem to show that the interval
Gauss elimination is generally stronger. In Sect. 5, Theorem 1 is implemented using the
interval Gauss elimination technique.

The following three examples illustrate the application of Theorem 1 to a differentiable
mono-objective problem, a non differentiable mono-objective problem, and to a differentiable
multi-objective problem respectively.

Example 1 Consider the problem of minimizing x1 subject to g1(x) ≤ 0 and g2(x) ≤ 0
where g1(x) := x2

1 + (x2 − 10)2 − 202 and g2(x) := x2
1 + (x2 + 10)2 − 202, whose global

minimum is attained at (−10
√

3, 0)T . The feasible set of this problem is depicted on the left
graphic of Fig. 1.

3 These inequality constraints are only potentially active because interval extensions are generally pessimistic.
All rejection tests proposed remain correct when a potentially active constraint is actually inactive, although
they are more efficient as inactive constraints are more accurately detected.
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Fig. 1 Left feasible set and boxes involved in Examples 1 and 2. Right the image of the feasible set in the two
objective space of Example 3 is the gray disk (among which the black circle satisfy the Fritz John conditions)

Consider the box x = ([−2, 2], [8, 12]), also depicted on Fig. 1. In order to check con-
straints activity, we first consider the trivial interval extensions g1(x) = [−∞,+∞] and
g2(x) = [−∞,+∞], that is we consider all constraints are potentially active. In this case,
G(x) has two lines and three columns, and hence cannot be full column rank. Theorem 1
fails rejecting the box. Consider now the natural interval extensions of the constraints, that
gives rise to g1(x) = [−400,−392] and g2(x) = [−76, 88]. This proves that g1(x) ≤ 0
is not active (while g2 is potentially active, and even active since the interval evaluation is
optimal), therefore

G(x) =
(
∇f(x) | ∇g2(x)

)
=

(
1 [−4, 4]
0 [36, 44]

)
. (9)

This interval matrix being obviously full column rank, Theorem 1 now allows rejecting the
box, hence the critical importance of preliminary checking the constraint activity.

Consider now the box x = ([15, 19], [−2, 2]), also depicted on Fig. 1. The natural interval
extensions of the constraints give rise to the following enclosures: g1(x) = [−111, 105] and
g2(x) = [−111, 105]. Hence the two constraints are potentially active, while we can see on
Fig. 1 that they are actually both active inside x. Thus Theorem 1 fails rejecting the box (a
2 × 3 matrix cannot be full column rank), which is normal since this box contains a local
maximum that also satisfies the Karush–John conditions.

Example 2 Consider the problem of minimizing x2 subject to g(x) ≤ 0 where g(x) =
x2

1 + (|x2|+ 10)2 − 202. The feasible set of this problem is the same as in Example 1, and its
optimum is attained at (0,−10)T . As in Example 1, consider the box x = ([15, 19], [−2, 2]).
Then g(x) = [−75, 105] so the constraint is potentially active inside x (even active since the
interval evaluation is optimal), so

G(x) =
(
∇f(x) | ∂g(x)

)
=

(
0 [30, 38]
1 [−24, 24]

)
. (10)

The enclosure of the generalized gradient of g is computed as explained in Sect. 2. This
interval matrix being obviously full column rank, Theorem 1 allows rejecting the box.

Example 3 Consider the bi-objective problem with three variables that consists in minimizing
f (x) = (x1 + x2, x1 − x2) subject to the constraint x2

1 + x2
2 + x2

3 ≤ 200. The image of the

123



J Glob Optim (2014) 58:653–672 659

feasible set by the vectorial objective function is depicted on the right graphic of Fig. 1,
together with the image of the solutions that satisfy the Karush–John conditions in black,
among which the Pareto optimal solutions.

Consider the box x = ([−12,−10], [4, 6], [5, 7]). It’s image in the objective space is
depicted as the lower most parallelogram, which does not contain any Pareto optimal solution
although close to the Pareto frontier (hence the box could be rejected by some rejection test).
The interval evaluation of the constraint is g(x) = [−59, 29], hence it is potentially active
(actually it is active since this interval evaluation is optimal). Hence

G(x) =
(
∇f1(x) | ∇f2(x) | ∇g(x)

)
=

⎛

⎝
1 1 [−24,−20]
1 −1 [8, 12]
0 0 [10, 14]

⎞

⎠ . (11)

This interval matrix is obviously full column rank (note that the inverse midpoint precon-
ditioning is unable to prove G(x) is full rank because interval entries are too wide, while
interval Gauss elimination is able to provided that the right pivoting strategy is used), hence
the box can be rejected.

Consider the box x = ([13, 15], [−1, 1], [−1, 1]). It’s image in the objective space is
depicted as the upper most parallelogram, which contains some solutions of the Karush–
John conditions (hence the box should not be rejected by any rejection test). The interval
evaluation of the constraint is g(x) = [−31, 27], hence it is potentially active (actually it is
active since this interval evaluation is optimal). Hence

G(x) = (∇f1(x) | ∇f2(x) | ∇g(x)) =
⎛

⎝
1 1 [26, 30]
1 −1 [−2, 2]
0 0 [−2, 2]

⎞

⎠ . (12)

Since the last line of G(x) contains the null vector, G(x) is not full column rank and the
rejection test does not reject it as expected.

3.2 Multipliers sign test

The second test uses the multiplier non-negativeness and is therefore restricted to problems
with only inequality constraints.

Theorem 2 If the problem has only inequality constraints (i.e. q = 0) and G(x) has a line
where all interval entries don’t contain zero and have the same sign then x contains no local
optimum.

Proof Consider an arbitrary x ∈ x. Hence, (∂ f (x)|∂g•(x)) ⊆ G(x) so the i th line of
(∂ f (x)|∂g•(x)) has only strictly positive (respectively negative) entries. Since the vector
(λ, r) is nonnegative, with at least a strictly positive component, the i th component of
∂ f (x) λ + ∂g•(x) r• is strictly positive (respectively negative). Hence Eq. (8) cannot hold,
so Eq. (1) does not hold neither, and x is not a local optimum. ��
Example 4 Consider the last case of Example 1, i.e. the box x = ([15, 19], [−2, 2]). Using
the natural interval extension, we have seen that the two constraints are potentially active
inside x (they are actually active inside x) and thus using the natural interval extension of the
gradients we obtain

G(x) =
(

1 [30, 38] [30, 38]
0 [−24,−16] [16, 24]

)
. (13)
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As seen in Example 1 it is not full column rank and thus Theorem 1 does not apply. However,
its first line contains only strictly positive entries, and thus Theorem 2 allows rejecting the
box.

Example 5 Consider the last case of Example 3. As seen in Example 3 it is not full column
rank and thus Theorem 1 does not apply. However, its first line contains only strictly positive
entries, and thus Theorem 2 allows rejecting the box.

Theorem 2 has a different aim from Theorem 1: While the latter aims at rejecting boxes
close to local minima (hence helping fighting the cluster effect), Theorem 2 will allow reject-
ing boxes that contain e.g. maxima. In the context of mono-objective optimization, the usual
strategy that consists in exploring regions where the objective function is potentially low does
lower the impact of Theorem 2. However, its usefulness in the context of multiple objective
optimization could turn out to be greater (as pointed out e.g. in [22] where a weaker test is
used, see Sect. 4.1).

3.3 Multipliers domain test

The preconditioning method for checking the rank of G(x) can be adapted to enclose the
multipliers domains in view of applying an interval Newton operator to the first order con-
ditions system when the matrix G(x) turns out to be non full column rank. We introduce the
interval matrix G∗(x) ∈ IR

(n+1)×(m+p•+q) where one last line made of 1 and 0 is added to
G(x):

G∗(x) :=
(

∂f(x) ∂g•(x) ∂h(x)

1T 0T 0T

)
, (14)

where 1T and 0T are horizontal vectors made of 1 and 0, respectively. This last line intends
normalizing the multipliers λ by

∑
λi = 1, which is a valid normalization provided that(

∂g•(x)|∂h(x)
)

is full rank. This is formalized in the following theorem.

Theorem 3 Let k = p• + q, C ∈ R
(m+k)×(n+1) be a matrix,4 and define A := C G∗(x).

Consider the following block representations of these matrices:

C =
(

C11 C12

C21 C22

)
and A =

(
A11 A12

A21 A22

)
(15)

with C11 ∈ R
m×n, C12 ∈ R

m×1, C21 ∈ R
k×n, C22 ∈ R

k×1, A11 ∈ IR
m×m, A12 ∈

IR
m×k, A21 ∈ IR

k×m and A22 ∈ IR
k×k , so that

A11 = C11 ∂f(x) + C12 1T (16)

A12 = C11 (∂g(x) | ∂h(x)) (17)

A21 = C21 ∂f(x) + C22 1T (18)

A22 = C21 (∂g(x) | ∂h(x)). (19)

Note that C12 1T and C22 1T are actually vector outer products. Suppose that A22 is strictly
diagonally dominant. Then:

(i)
(
∂g•(x) | ∂h(x)

)
is full column rank, and any local minimizer inside x satisfy the

Karush–John conditions with multipliers (λ, r•, s) satisfying
∑

1≤i≤m λi = 1, called
normalized multipliers below (multipliers of inactive inequality constraints being 0).

4 Typically, an approximate generalized inverse of the midpoint of G∗(x).
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(ii) The normalized multipliers (λ, r•, s) belong to both united solution sets Σ(G∗, e) ⊆
Σ(A, Ce), with e = (0, . . . , 0, 1)T ∈ R

n+1.
(iii) The normalized multipliers λ of the objectives have the initial domains λi = [0, 1].
When m = 1, the domain of the single objective multiplier is reduced to λ1 = [1, 1].
The normalized multipliers (r•, s) of the constraints have the initial domains (r•, s) =
C22 + ‖C22 − A21λ − A22C22‖∞(±1), where (±1) ∈ IR

k is the interval vector whose
components are [−1, 1]. Furthermore, the initial domains ri of inequality constraints
multiplier are intersected with [0,+∞[.
(iv) The normalized multipliers domains can be improved contracting them by applying
the interval Gauss–Seidel iteration to the united solution sets Σ(G∗, e) and Σ(A, Ce).5

When the Gauss–Seidel iteration proves that one of the united solution sets is empty, the
box x does not contain any local minimizer, and hence can be rejected.

Proof From the block representation of the product C G(x), we see that C G(x) strictly diag-
onally dominant entails that A22 = C21 (∂g(x) ∂h(x)) is also strictly diagonally dominant.
Therefore, (∂g(x) ∂h(x)) is full column rank. Now, any local minimizer inside x satisfies the
Karush–John conditions, i.e. G (λ, r•, s)T = 0 for some G ∈ G(x), the multipliers being not
all 0 and λ, r• ≥ 0. Since (∂g(x) ∂h(x)) is full column rank, all λi cannot be zero (otherwise
all multipliers would be 0 contradicting the Karush–John conditions), and since they are non-
negative we have

∑
1≤i≤m λi > 0. Therefore, all multipliers can be scaled by (

∑
1≤i≤m λi )

−1,
and any local minimizer inside x has some multipliers that satisfy

∑
1≤i≤m λi = 1, hence (i).

Normalized multipliers satisfy G∗ (λ, r•, s)T = e for some G∗ ∈ G∗(x), that is
(λ, r•, s)T ∈ Σ(G∗, e). Preconditioning this system with C gives rise to Σ(G∗, e) ⊆
Σ(A, c), hence (ii).

Since normalized multipliers satisfy
∑

1≤i≤m λi = 1 and λi ≥ 0, we have λi ∈ [0, 1].
In the case of mono-objective problems, the normalization equation becomes λ1 = 1 and
its domains is obviously reduced to [1, 1]. Now, from the block decomposition of the linear
system Σ(A, Ce), the multipliers (r, s) also belong to Σ(A22, C22 −A21λ). By Lemma 4.2.1
of [28] (with x̃ = C22), we can translate the solution set as follows: Σ(A22, C22 − A21λ) ⊆
C22 + Σ(A22, C22 − A21λ − A22C22). Finally, Proposition 4.1.9 of [28] (with C = C ′ = I
and u = v = 1) provide the enclosure of (r, s) given in (iii). Since the multipliers of the
inequality constraints are non-negative, their initial domains can be intersected with [0,+∞[.

Finally, (iv) is obvious since by (ii) normalized multipliers belong to the given linear
interval equations, while the interval Gauss–Seidel iteration reduces domains keeping all
solutions of these systems. ��

When C is an approximation of some midpoint pseudo-inverse of G(x)∗, the interval
matrix C G∗(x) is approximately centered on the identity matrix, therefore so is A22, while
A21 is centered on 0. As a consequence, the error bound ‖C22−A21λ−A22C22‖∞ is expected
to be small provided that the interval entries of G are thin enough, hence a good enclosure
of the multipliers domains for small enough boxes x. Note that the block representation
(16)–(19) needs not to be explicitly formed in practice: The strict diagonal dominance of A22

and the error bound ‖C22 − A21λ − A22C22‖∞ can be both computed directly using A. The
following three examples show the application of Theorem 3 to the problems introduced in
Examples 1, 2 and 3, respectively.

5 Note that Σ(A, Ce) is preconditioned so the Gauss–Seidel iteration needs solving only diagonal entries of
A. On the other hand, Σ(G∗, e) is not preconditioned so all entries of G∗ need to be solved. This can be
efficiently performed using inner subtraction.
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Example 6 Consider the problem of Example 1 with the first box, so the interval matrix
G∗(x) is the interval matrix G(x) given in Eq. (9) with one additional row (1 0). The midpoint
Moore–Penrose pseudo-inverse C , and the corresponding preconditioned interval matrix A
are

C =
(

0.5 0 0.5
0 0.025 0

)
and A =

(
1 [−2, 2]
0 [0.9, 1.1]

)
, (20)

where the block decompositions used in Theorem 3 are displayed. The submatrix A22, which
is here a 1 × 1 interval matrix, is strictly diagonally dominant. Hence, the initial domain of
λ1 is λ1 = [1, 1], and we proceed by computing ‖C22 − A21λ − A22C22‖∞ which is here
equal to 0. Hence the initial domain of r1 is r1 = [0, 0]. Finally, applying one iteration of
the interval Gauss–Seidel to the preconditioned system Σ(A, Ce) proves that there is no
normalized multipliers, and thus no local minimum in x.

Now consider the second box of Example 1, so G∗(x), C and A are respectively approx-
imately

⎛

⎜⎝
1 [30, 38] [30, 38]
0 [−24, −16] [16, 24]
1 0 0

⎞

⎟⎠ ,

⎛

⎜⎝
0 0 1

0.0147 −0.025 −0.0147

0.0147 0.025 −0.0147

⎞

⎟⎠ and

⎛

⎜⎝
1 0 0

0 [0.841, 1.159] [−0.159, 0.159]
0 [−0.159, 0.159] [0.841, 1.159]

⎞

⎟⎠ .

(21)

The submatrix A22, which is here a 2 × 2 interval matrix, is strictly diagonally dominant.
Hence, the initial domain of λ1 is λ1 = [1, 1], and we proceed by computing ‖C22 −
A21λ − A22C22‖∞ which is approximately equal to 0.00467. The initial domains of r1 and
r2 are respectively r1 = r2 = [−0.0194,−0.0100]. Finally, since the normalized multipliers
domain are strictly negative, the box can be rejected (it actually contains a local maximum,
as seen on Fig. 1).

Example 7 Consider the problem of Example 2, so the interval matrix G∗(x) is the interval
matrix G(x) given in Eq. (10) with one additional row (1 0). The midpoint Moore–Penrose
pseudo-inverse C , and the corresponding preconditioned interval matrix A are

C =
(

0 0.5 0.5
0.294 0 0

)
and A =

(
1 [−12, 12]
0 [0.882, 0.118]

)
. (22)

The submatrix A22, which is here a 1 × 1 interval matrix, is strictly diagonally dominant.
Hence, the initial domain of λ1 is λ1 = [1, 1], and we proceed by computing ‖C22 − A21

λ−A22C22‖∞ which is here equal to 0. Hence the initial domain of r1 is r1 = [0, 0]. Finally,
applying one iteration of the interval Gauss–Seidel to the preconditioned system Σ(A, Ce)
proves that there is no normalized multipliers, and thus no local minimum in (x).

Example 8 Consider the problem of Example 3 with the first box, so the interval matrix
G∗(x) is the interval matrix G(x) given in Eq. (11) with one additional row (1 1 0). The
midpoint Moore–Penrose pseudo-inverse C , and the corresponding preconditioned interval
matrix A are

C =
⎛

⎝
0.236 0.5 0.0155 0.264

−0.0492 −0.5 0.326 0.549
−0.0285 0 0.0311 0.0285

⎞

⎠ and A =
⎛

⎝
1 0 [−1.51, 1.51]
0 1 [−1.76, 1.76]
0 0 [0.880, 1.120]

⎞

⎠ . (23)

The submatrix A22, which is here a 1 × 1 interval matrix, is strictly diagonally dom-
inant. Hence, the initial domain of λ is λ = ([0, 1], [0, 1]), and we proceed by com-
puting ‖C22 − A21λ − A22C22‖∞ which is here approximately equal to 0.0034. Hence
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the initial domain of r1 is r1 = [0.0251, 0.0319]. Finally, applying one iteration of the
interval Gauss–Seidel to the preconditioned system Σ(A, Ce) reduces the domains to
(λ, r1) = ([0.216, 0.313], [0.493, 0.606], [0.0254, 0.0319]), and the next application of the
interval Gauss–Seidel iteration to Σ(G∗, e) proves the emptiness of the multipliers domain,
allowing rejecting x.

Now consider the second box of Example 3, so the interval matrix G∗(x) is the interval
matrix G(x) given in Eq. (12) with one additional row (1 1 0). The midpoint Moore–Penrose
pseudo-inverse C , and the corresponding preconditioned interval matrix A are

C =
⎛

⎝
0 0.5 0 0.5
0 −0.5 0 0.5

0.0357 0 0 −0.0357

⎞

⎠ and A =
⎛

⎝
1 0 [−1, 1]
0 1 [−1, 1]
0 0 [0.928, 1.072]

⎞

⎠ . (24)

The submatrix A22, which is again here a 1×1 interval matrix, is strictly diagonally dominant.
Hence, the initial domain of λ is λ1 = ([0, 1], [0, 1]), and we proceed by computing ‖C22

−A21λ−A22C22‖∞ which is here approximately equal to 0.0025. Hence the initial domain of
r1 is r1 = [−0.0383,−0.0331]. Finally, since the normalized multipliers domain are strictly
negative, the box can be rejected (it actually contains Pareto solutions for the maximization
counterpart of the problem, as seen on Fig. 1).

4 Related work

4.1 Monotonicity test for multiple-objective optimization

A simple extension of the mono-objective monotonicity test to multi-objective optimization
was proposed in [22]. Using the notations introduced here, the test proposed in [22] is
restricted to inequality constraints (i.e. q = 0) and consists in rejecting a box if p• = 0
(i.e. there is no active inequality constraint) and one line of G(x) has entries that don’t
contain zero and have the same sign. Therefore, Theorem 2 generalizes the rejection test
of [22] to possibly active constraints. This generalization is critical as seen on the typical
Example 4 where the test of [22] does not allow rejecting the box. Note finally that the
connection between the monotonicity test and the sign of the Lagrange multipliers was not
mentioned in [22].

Remark 3 The monotonicity test generally also includes some specific treatment for bound
constraints a ≤ xi ≤ b that consists in reducing the domain xi of the variable xi to one of
its bounds whenever the interval evaluation ∇fi (x) of the i th component of the gradient has
a fixed sign.

4.2 Interval differential formulation

A rejection test, called interval differential formulation, was proposed in [31]. Its scope
is unconstrained multiple-objective optimization with an arbitrary number of variables,
although experiments in [31] are restricted to bi-objective problems with two variables.
Informally, it consists in studying interval evaluations of the gradients over a given box, aim-
ing proving that some descent direction for all objectives exists. Then this box can be rejected
since all objectives can be improved simultaneously starting from any point inside the box.
Although not noted in [31], this is a direct consequence of unconstrained first order condi-
tions. From a computational point of view, in the case of two objectives and two variables,
such regions are found intersecting interval angles of the interval evaluations of the gradients.
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In the case of more than two variables, projections in two variables spaces are proposed to
be performed, although not formally justified.6 The case of more than two objectives is not
detailed in [31]. Bound constraints are handled in [31] by a preliminary partition of the domain
into an interior part and 2n boundary parts. Since the interval Gauss elimination is optimal
for checking the linear independence of two interval vectors, Theorem 1 is strictly stronger
in this case, while it has a much wider scope since it tackles constrained multi-objective
problems. Noteworthily, this rejection test together with the branch and bound algorithm
proposed in [31] are patented, see [32].

4.3 Monotonicity test improvement for mono-objective optimization

A rejection test, called the modified monotonicity test (MMT), that cannot be derived using
first order conditions has been proposed in [21], in the restricted case of inequality con-
strained mono-objective optimization. The pseudo code given in Section 4 of [21] consists
in rejecting a box x provided that each constraint g j (x) ≤ 0 is either, inactive inside the box

(i.e. g j (x) < 0), or is independent with respect to a variable xi (i.e.
∂g j
∂xi

(x) = 0) and the

objective function is strictly monotonic with respect to this variable (i.e. 0 /∈ ∂f
∂xi

(x)). This
property is incorrect, as shown by the following counter example: Consider the problem
of minimizing f (x) = (x1 − 1)2 + x2

2 subject to g(x) ≤ 0 with g(x) = 0 if x1 ≤ 0
and g(x) = x2

1 otherwise (note that g is smooth). The global optimum of this problem is
x∗ = (0, 0)T . Consider the box x = ([−1, 0], [−1, 1])T . Since ∂f

∂x1
(x) = [−3,−1] < 0 and

∂g
∂x1

(x) = 0, the MMT rejects this box although it contains the global optimum.
An alternative MMT was proposed by the author of [21] in a personal communication: The

property holds if slightly different assumptions are fulfilled: The derivative
∂g j
∂xi

(x) is equal
to zero not only in the box x, but in a superbox, e.g., [x − ε, x + ε]. This is, in particular,
fulfilled, if the derivatives are equal to zero in the whole domain, i.e., if the formulae for
g j do not contain the variable xi . Such a test and first order condition rejection tests are
complementary.

4.4 Multipliers domain enclosures for mono-objective optimization

Two different methods for computing bounds on the multipliers in the mono-objective case
are proposed in [13]. The first uses the interval Newton applied to the first order system of
equations. By using a specific variable ordering and a sharp interval evaluation of the gradients
over subdomains, the method of [13] applies the interval Newton without any initial domain
for multipliers, and computes some domains using the interval Gauss elimination as an
interval linear solver for the interval Newton. The second is similar to Theorem 3 in the sense
that it tackles the first order system as an over constrained linear system for the multipliers.
However, both methods proposed in [13] use a different normalization equation from the one
proposed here: In [13] multipliers are normalized using the interval linear equation

λ1 +
∑

1≤i≤p•
ri +

∑

1≤i≤q

Esi = 1, (25)

6 Although not noted in [31], the angle between two gradients interval evaluations g1 and g2 can be proved not
to contain π simply by checking that the scalar product g1 g2 does not intersect ||g1|| ||g2||. This is sufficient
for rejecting the box, and easily computed for arbitrary dimensions.
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with E = [1, 1+ε]where ε is the smallest number such that 1+ε is strictly greater than 1 in the
machine number representation. The rational is that if E = 1 then the normalization equation
would be incompatible with some problems, hence leading to loosing some minimizers in
these cases. Consider e.g. the problem of minimizing x1 under the constraint 0.5 − 0.5x2

1− 0.5x2
2 = 0 whose minimum is x = (−1, 0) with multipliers satisfying λ1 + s1 = 0. These

multipliers are incompatible with the normalization equation λ1+s1 = 1, which would entail
rejecting this minimizer. By using λ1+Es1 = 1, this local minimizer is not rejected. However,
this normalization equation does not allow computing any useful multipliers domain in this
case, while the normalization equation used in Theorem 3 allows computing sharp multipliers
domains in this case too. Note that the normalization equation used here rely on the fact that
constraints gradients interval evaluations are linearly independent, which is proved during
the test. Although the normalization equation used in [13] does not rely on this constraint
qualification, their methods also fails computing multipliers domains when it does not hold
(in fact, multipliers domains would be useless when no constraint qualification hold since
the interval Newton method would fail in this case).

4.5 Exclusion regions for systems of equations

Exclusion regions (see [34] and references therein) consists in building a region around a
solution of a system of equations where no other solution is proved to lie. They therefore allow
efficiently fighting the cluster effect, which also appears when solving systems of equations.
In the context of global optimization, an exclusion region for the first order conditions is
built. The exclusion region is built only one time when the local optimum is found, which is
an advantage with respect to the rejection tests proposed here that have to be checked at each
node of the search tree. On the other hand, exclusion regions require third order derivatives
of the objective function and constraints and have a quadratic complexity with respect to the
number of variables, while the rejection test proposed here uses only first order derivatives
and have a cubic complexity. Noteworthily, exclusion regions are quite difficult to implement
contrarily to rejection tests.

5 Experiments

Experiments reported in this section are restricted to mono-objective problems, because of
the lack of implementation of branch and bound algorithms dedicated to multi-objective
problems. A smooth and a non smooth mono-objective academic problems are investigated
in Sects. 5.1 and 5.2 respectively, as well as a smooth bi-objective academic problem in
Sect. 5.3. Finally, the improvement brought by the rejection tests are illustrated on a standard
difficult mono-objective problem in Sect. 5.4.

5.1 Smooth mono-objective academic problem

We consider the problem of minimizing f (x) := ∑
i xi , x ∈ R

n subject to the constraint
g(x) := ∑

i x2
i − n ≤ 0. The global optimum x∗ = (−1, . . . ,−1)T is easily found using a

local solver, hence the branch and bound algorithm consists in solving

f (x) ≤ f (x∗) and g(x) ≤ 0 (26)

(the solution sets of these two constraints are depicted in the left hand side graphic of Fig. 2).
In the neighborhood of the global optimum of this problem, the minimal distance d(x, y)
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Fig. 2 The solution sets for n = 2 of the constraints from Sects. 5.1 and 5.1 respectively (in the left graphic,
the dashed rectangle represent the cylinder where a cluster effect is expected)

between a feasible point x and its closest point y that satisfies f (y) ≤ f (x∗) behaves like
d(x, y) = O(d(x, x∗)2) = O(d(y, x∗)2). Interval techniques will be able to reject a box x
provided that at least one of the constraints is false inside it. Hence, we expect that using a
criteria for stoping the search when a box is smaller than ε should output a paving of such
boxes that covers approximately a cylinder with a base formed of a (n − 1)-sphere of radius

O
(
ε

1
2

)
(of measure O

(
ε

n−1
2

)
), and a height of O(ε) (see the dashed cylinder depicted

in the left hand side graphic of Fig. 2). Such a cylinder has a measure of O
(
ε1+ n−1

2

)
and

this should result in a cluster of O
(
ε1+ n−1

2 ε−n
)

= O
(
ε− n−1

2

)
boxes of size ε (called ε-

boxes). This asymptotic analysis7 is pretty well confirmed by experiments carried out using
the GloptLab [5]:8 The upper left graphic of Fig. 3 shows the number of ε-boxes computed
for various values of ε without any rejection test, the light gray lines corresponding to the
asymptotic models. It clearly shows the computed boxes follow very accurately the cluster
effect model,9 which makes this academic problem unsolvable using a branch and bound
algorithm for even quite small values of n.

The upper right and lower left graphics of Fig. 3 show the same graphics in the case
where first order rejection tests are used. It clearly shows that for a fixed n, the number of
computed ε-boxes is drastically decreased, and even does not depend on ε anymore: The
cluster effect have been canceled allowing tackling problems with much higher values of n
and with much shaper accuracy. These graphics seem to show that for a fixed ε the number
of ε-boxes increases exponentially with respect to n. The lower right graphic of Fig. 3 shows
the number of splits needed to reach boxes of size ε = 0.006 with respect to the problem

7 The asymptotic analyses of the cluster effect provided in [6], in the context of unconstrained optimization,
or in [34], in the context of a system of equations, lead to different models that do not hold here. In particular
both [6] and [34] consider some pessimistic interval evaluations, while this academic problem suffers from
the cluster effect in spite of exact interval evaluations of its objective function and constraints.
8 GloptLab implements here a branch and prune algorithm based on constrain propagation on DAGs [35,40].
9 Experiments non reported here have shown that the constraint propagation can remove the cluster effect
when n = 2, although the closer to the optimum the slower the convergence of the propagation, converging
to infinitely slow convergence (which requires very expensive constraint propagation). This is generic in two
variables, but not in higher dimensions where the constraint propagation is not able anymore to remove the
cluster effect.
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Fig. 3 Smooth mono-objective academic problem. Number of boxes of size ε, plotted with respect to ε

with no rejection test (upper left, for n ∈ {2, . . . , 5}), the multipliers sign and full rank test (upper right, for
n ∈ {2, . . . , 8}), and the multipliers sign and multipliers domain test (lower left, for n ∈ {2, . . . , 8}). Different
markers represent results for different dimensions. In the upper left graphic, the light gray lines represent the
fitted cluster effect model. The lower right graphic shows the number of splits needed to reach boxes of size
ε = 0.006 with respect to the problem dimension, using no rejection test (full line), the full rank test (dashed
line) and the domain enclosure test (dotted line)

dimension. It clearly shows an exponential dependence for both the full rank and multipliers
domain tests, which would require fully solving the first order optimality conditions to be
removed (e.g. with an interval Newton operator).

5.2 Nonsmooth mono-objective academic problem

The problem of minimizing f (x) := ∑
i xi , x ∈ R

n subject to the constraint g(x) := ∑
i x2

i+ |x1 + 1| − n ≤ 0 has a smaller feasible set than the previous one, but has the same global
minimizer. Furthermore, the constraint is nonsmooth at the global minimizer. Its feasible
set is depicted in the right hand side diagram of Fig. 2 for n = 2. The nonsmooth edge at
the global minimum removes the tangency between the feasible set and the objective level
set, and therefore should prevent the cluster effect. This is confirmed experimentally: Fig. 4
shows the same graphic as Fig. 3 for this nonsmooth academic problem. For n = 2 with
no rejection test (upper left graphic), we see that the number of ε-boxes remains constant,
hence the absence of the cluster effect. For higher dimensions, the cluster effect reappears but

following the model O
(
ε− n−2

2

)
(these models are shown in gray lines), i.e. the nonsmooth

edge removes one dimension of the cluster effect. Still the cluster effect prevents any attempt
of solving this academic problem using a branch and bound algorithm for even quite small
values of n.

The upper right and lower left graphics of Fig. 4 show that again the rejection tests
allows drastically reducing the cluster effect, although the exponential dependence of the
number of ε-boxes with respect to the dimension is confirmed in the lower right graphic of
Fig. 4.
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Fig. 4 Nonsmooth mono-objective academic problem. Same graphics as in Fig. 3

5.3 Smooth bi-objective academic problem

We consider the bi-objective problem consisting in minimizing f (x) = (aT x, bT x)T , with
ai = 1 and bi = (−1)i for i ∈ {1, . . . , n}, x ∈ R

n subject to g(x) := xT x − n ≤ 0. We
allow only even n, since we want the vectors a and b to be orthogonal. We again transform the
optimization problem into a constraint satisfaction problem by computing its global Pareto
frontier and enforcing the dominance constraint. Since the problem is convex, the Pareto
frontier can be obtained by minimizing aggregations of the objectives ft (x) = (1− t) aT x +
t bT x for t ∈ [0, 1]. One easily computes the global minimizer xt of this problem, and the
corresponding bi-objective evaluation:

xt = −√
n

(1 − t)a + tb

‖(1 − t)a + tb‖ and f (xt ) = −n

⎛

⎝
1−t√

(1−t)2+t2

t√
(1−t)2+t2

⎞

⎠ (27)

As t varies inside [0, 1], f (xt ) follows the quarter of the radius n circle in the negative
quadrant. Therefore, global Pareto dominance can be enforced by the following constraints:

(aT x)2 + (bT x)2 ≥ n2, aT x ≤ 0, bT x ≤ 0 and g(x) ≤ 0. (28)

The constraint (aT x)2 + (bT x)2 ≥ n2 can be reformulated as

⎛

⎝
n
2∑

i=1

x2i

⎞

⎠
2

+
⎛

⎝
n
2∑

i=1

x2i−1

⎞

⎠
2

≥ n

2

2
, (29)

which removes the interval evaluation pessimism [since each variable has only one occurrence
in (29)] and hence allows us to focus only on the cluster effect. Enforcing (29) is equivalent
to enforcing the dominance relation with respect to every point of the Pareto frontier.

123



J Glob Optim (2014) 58:653–672 669

0.010 0.1000.0500.020 0.2000.0300.015 0.1500.070

100

1000

104

105

106

0.1000.0500.020 0.2000.0300.015 0.1500.070

50

100

500

1000

5000

0.1000.0500.020 0.2000.0300.015 0.1500.070

50

100

500

1000

5000
1 10 4

3 4 5 6

50
100

500
1000

5000
1 10 4

5 10 4

Fig. 5 Smooth bi-objective academic problem. Same graphics as in Fig. 3 with n ∈ {2, 4, 6} and ε = 0.1 for
the lower right graphic

The asymptotic analysis conducted in Sect. 5.1 also holds here, although since the solu-
tion set is now a 1-dimensional manifold the problem behaves as it would have one vari-
able less. Furthermore, the contribution of the cluster effect has to be integrated along this

1-dimensional manifold, leading to a cluster of O
(
ε−1 ε− (n−1)−1

2

)
= O

(
ε− n

2

)
boxes. This

behavior is confirmed by the upper left graphic of Fig. 5. The upper right and lower left
graphics in the same figure show that the first order rejection tests drastically reduce the
cluster effect, however since we have to cover a 1-dimensional manifold of fixed length, we

also observe that the number of boxes still increases by O
(
ε−1

)
.

5.4 Benchmark problem

We finally consider the following nonlinear problem taken from [7]:

min −18 log(x2 + 1) − 19.2 log(x1 − x2 + 1) + 5y1 + 6y2 + 8y3 + 10x1 − 7x3 + 10
s.t. 0.8 log(x2 + 1) + 0.96 log(x1 − x2 + 1) − 0.8x3 ≥ 0

log(x2 + 1) + 1.2 log(x1 − x2 + 1) − x3 − 2y3 + 2 ≥ 0
x2 − x1 ≤ 0
x2 − 2y1 ≤ 0
−x2 + x1 − 2y2 ≤ 0
y1 + y2 − 1 ≤ 0

(30)

with bound constraints x1, x2 ∈ [0, 2] and x3, y1, y2, y3 ∈ [0, 1]. Note that the variables yi

are integers in [7] but we solve here the version proposed in the Coconut [37] benchmarks
where this integrality constraint is relaxed. Figure 6 shows that on this problem, both the
full column rank rejection test and the multipliers domains rejection test allow removing the
cluster effect. The left hand side graphic shows that the full column rank rejection test is
approximately 1.5 quicker than the multipliers domain rejection test on this problem, while
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Fig. 6 Benchmark problem: width of the objective enclosure with respect to computation time (left) and
number of splits (right). For each figure, full line, dashed line and dotted line correspond respectively to no
rejection test, full column rank rejection test and multipliers domain rejection test

the right hand side graphic shows that the both achieve the same performance with respect
to the number of splits.

6 Conclusion

Three rejection tests based on first order multi-objective optimality conditions and interval
arithmetic have been proposed. They allow rejecting boxes not containing any local mini-
mizer. They generalize previously proposed rejection tests and can be easily implemented and
included in any bisection or branch and bound algorithm. In the context of mono-objective
optimization, although less powerful than fully solving the first order system of equations,
they are much simpler to implement and our experiments have shown that they allow drasti-
cally deceasing the cluster effect. On the other hand, the proposed rejection tests can be used
to preprocess and then solve the first order optimality conditions. In the context of multi-
objective optimization, the first order system of equations is under-constrained and hence
cannot be solved as efficiently as for mono-objective problems. Therefore, these rejection
tests are even more important in the context of multi-objective problems, which also suffer
of the cluster effect as illustrated in Sect. 5.3.
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