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Abstract

The Krawczyk and the Hansen-Sengupta interval operators are closely related to the interval Newton
operator. These interval operators can be used as existence tests to prove existence of solutions for sys-
tems of equations. It is well known that the Krawczyk operator existence test is less powerful that the
Hansen-Sengupta operator existence test, the latter being less powerful than the interval Newton oper-
ator existence test. In 2004, Frommer et al. proposed an existence test based on the Poincaré-Miranda
theorem and proved that it is more powerful than the Krawczyk existence test. In this paper, we complete
the classification of these four existence tests showing that, in practice, the Hansen-Sengupta existence
test is actually more powerful than the existence test proposed by Frommer et al.

AMS Subject Classifications: 65H10, 65G20, 65G40.

Keywords: Nonlinear systems of equations, existence test, interval analysis.

1. Introduction

Interval enclosures of real functions have an intrinsic refutation power: they can be
used naturally to prove that a system of equations has no solution inside a given
region. Another use of interval enclosures is to rigorously check the hypothesis of
some existence theorems like the Brouwer or Poincaré-Miranda1 theorems. In that
way, interval analysis can be used to rigorously prove the existence of solutions to
systems of equations (see [5], [4] for introductions to interval analysis). Such ver-
ifiable conditions for the existence of solutions of systems of equations are called
existence tests. The comparison of existence tests is valuable for several reasons:
it often provides a better understanding of the existence tests and, when a test is
proved to be more powerful than an other one, it allows one to make the right choice.
Several comparisons between some existence tests have already been conducted (e.g.,
[2], [1], [3], [11]).

1 Poincaré-Miranda theorem is sometimes called Miranda theorem. Historically, Poin-
caré proposed this theorem in 1883 in [10] while Miranda, being unaware of Poincaré’s
work, provided a proof of this theorem based on the Brouwer fixed point theorem in 1940
in [6]. After Miranda’s work the theorem was called Miranda’s theorem until Poincaré’s
work was re-discovered in the 70’s.
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Fig. 1. Previously known hierarchy: arrows points to more powerful existence tests

We focus here on the four following existence tests: the Krawczyk existence test2, the
Hansen-Sengupta existence test, the Newton existence test and the Frommer-Lang-
Schnurr existence test. The first three come from the interpretation of the interval
operators that share the same names (cf. [8]). The last has been proposed in [3]. The
description of these tests is given in Sect. 2. The previously known hierarchy for the
proving power of these existence tests is summarized in Fig. 1. The comparisons
between the Krawczyk, Hansen-Sengupta and interval Newton existence tests can
be found in [8]. While, the comparison between the Krawczyk and Frommer-Lang-
Schnurr existence test has been conducted in [3].

In the present paper, the relationship between the Frommer-Lang-Schnurr and the
Hansen-Sengupta existence tests is investigated. The comparison is actually con-
ducted using a slightly weaker version of the Frommer-Lang-Schnurr existence test
(inequalities are replaced by strict inequalities in the test). Our main result is that
the Frommer-Lang-Schnurr existence test with strict inequalities is less powerful
than the Hansen-Sengupta existence test. We will argue that this alteration of the
Frommer-Lang-Schnurr existence test has no influence in typical practical situa-
tions. Therefore, the Hansen-Sengupta existence test will actually be proved to be
more powerful in practice than the Frommer-Lang-Schnurr existence test.

Notations: Interval objects are denoted using brackets. Throughout the paper,

[x] = ([x−
1 , x+

1 ], . . . , [x−
n , x+

n ])T is an interval vector and x̃ = (x̃1, . . . , x̃n)
T is an

element of [x] and f : [x] ⊆ R
n −→ R

n is a continuous vector-valued function. The
interval matrix [S] is an interval slope matrix for f , [x] and x̃, i.e., it satisfies

f(x) − f(x̃) ∈ [S] · (x − x̃) for all x ∈ [x]. (1)

Such an interval matrix can be computed, e.g., using the interval evaluation of the
derivatives of f (cf. [8]). The matrix C ∈ R

n×n is supposed to be nonsingular and
will be used as a preconditioning matrix. The order between reals is generalized to
intervals and [a] ≤ [b] holds if and only if sup[a] ≤ inf [b] while [a] < [b] holds if
and only if sup[a] < inf [b]. Finally, given a set E ⊆ Rn, the interval hull of E is the
smallest interval vector that contains E and is denoted by �E.

2 The Krawczyk existence test is called Moore test in [3] because Moore has provided a
proof of the existence test obtained using the Krawczyk operator.
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2. Statements of the existence tests

2.1. The Krawczyk and Hansen-Sengupta operators

The presentation given here follows the one given by Neumaier in [8]. The interval
Gauss-Seidel operator is defined as follows: first in dimension one, � ([a], [b], [x]) :=
� ([x] ∩ {x|(∃a ∈ [a])(∃b ∈ [b])(ax = b)}). In the case where 0 /∈ [a], one obtains
the expression � ([a], [b], [x]) = ([b]/[a]) ∩ [x] (cf. [8] for the expression in the case
0 ∈ [a]). Then, in arbitrary dimension, � ([A], [b], [x]) := [y] with

[yi ] := �


[aii ] , [bi ] −

∑
j<i

[aij ][yj ] −
∑
j>i

[aij ][xj ] , [xi ]


 . (2)

The interpretation of the interval Gauss-Seidel operator is
{

x ∈ [x] | (∃A ∈ [A]) (∃b ∈ [b]) (A · x = b)
}

⊆ � ([A], [b], [x]) . (3)

Finally, given a nonsingular matrix C ∈ R
n×n, the Krawczyk and Hansen-Sengupta

operators are defined as follows:

[K]([x], x̃) := x̃ − C · f(x̃) − (C · [S] − I ) · (
[x] − x̃

)
(4)

[H ]([x], x̃) := x̃ + �
(
C · [S] , −C · f(x̃) , [x] − x̃

)
. (5)

The following theorem shows the usefulness of these operators for the study of the
solutions of systems of equations.

Theorem 1 (Corollary 5.4.3 in [8]): If [x′] denotes either [K]([x], x̃) or [H ]([x], x̃)

then:

(i) Every zero x∗ ∈ [x] of f satisfies x∗ ∈ [x′].
(ii) If [x′] ∩ [x] = ∅ then f has no zero in [x].

(iii) If ∅ 
= [x′] ⊆ int[x] then f has at least one zero in [x′].

The existence tests obtained checking (iii) in Theorem 1 will be called the Krawczyk
and Hansen-Sengupta existence tests, respectively. The next corollary of Theorem 1
is obtained changing the definition (2) to

[yi ] := �


[aii ] , [bi ] −

∑
j 
=i

[aij ][xj ] , [xi ]


 , (6)

hence computing a superset of (2).

Corollary 1: If for all i ∈ {1, . . . , n}
0 /∈ (C · [S])ii and [hi ] ⊆ int[xi ], (7)

where [hi ] := x̃i − (1/(C · [S])ii)
((

C · f(x̃)
)
i

+ ∑
j 
=i (C · [S])ij · (

[xj ] − x̃j

))
,

then f has a zero in [x].
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In dimension superior than two, (6) can be a strict superset of (2). Therefore,
Corollary 1 is strictly weaker than the original Hansen-Sengupta existence test,
and it will be called the weak Hansen-Sengupta existence test.

Remark 1: It can be noted that [hi ] in Corollary 1 remains unchanged when one
replaces C by C′ with C′

ij = δiCij where δi ∈ {−1, 1}. Therefore, the success of the
weak Hansen-Sengupta existence test is invariant with respect to sign inversions of
rows in the matrix C.

Finally, the interval Newton operator also gives rise to a similar but more powerful
existence test. However, the computation of the interval Newton operator is more
complicated and is not detailed here (cf. [8], [9] and references therein).

2.2. The Frommer-Lang-Schnurr existence test

Following the idea proposed by Moore and Kioustelidis in [7], Frommer et al.
proposed in [3] an efficient way to rigorously check the hypothesis of the Poincaré-
Miranda theorem using interval analysis. The following existence test is a slight
generalization of their theorem (cf. Remark 2).

Theorem 2 (Theorem 3 in [3]): Consider a nonsingular matrix C ∈ R
n and, for all

i ∈ {1, . . . , n} define

[m](i,±) := (
C · f(x̃)

)
i

+ (C · [S])ii · (x±
i − x̃i ) +

∑
j 
=i

(C · [S])ij · ([xj ] − x̃j ). (8)

If for all i ∈ {1, . . . , n}
[m](i,−) ≤ 0 ≤ [m](i,+) or [m](i,+) ≤ 0 ≤ [m](i,−) (9)

then f has a zero in [x].

Remark 2: In the original theorem proposed in [3], the condition (9) is replaced by

the more restrictive condition [m](i,−) ≤ 0 ≤ [m](i,+), the present statement being a
trivial consequence of the original. The more general statement is proposed here in
order to make Theorem 2 compatible with the invariant of Theorem 1 pointed out in
Remark 1. This generalization has no practical interest because C is usually chosen to

be the midpoint inverse of [S] so [m](i,+) ≤ 0 ≤ [m](i,−) fails in every case.

This existence test will be called the Frommer-Lang-Schnurr existence test. For the
purpose of its comparison with the weak Hansen-Sengupta existence test, let us
consider the Frommer-Lang-Schnurr< existence test obtained replacing inequalities
by strict inequalities in the statement of Theorem 2: (9) is replaced by the more
restrictive condition

[m](i,−) < 0 < [m](i,+) or [m](i,+) < 0 < [m](i,−). (10)
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Situations where changing inequalities to strict inequalities prevents one from
proving existence are very rare and not likely to be met in practice (cf. Subsect. 3.2
for such an atypical situation).

3. The main result

3.1. Comparison of the weak Hansen-Sengupta and the
Frommer-Lang-Schnurr< existence tests

First of all, the weak Hansen-Sengupta existence test needs the assumption that 0 /∈
(C · [S])ii for all i ∈ {1, . . . , n} to be applied while this condition is not necessary for
the application of the Frommer-Lang-Schnurr existence test. Proposition 1 proves
that this difference is of no importance: although the Frommer-Lang-
Schnurr< existence test can be applied when 0 ∈ (C · [S])ii for some i ∈ {1, . . . , n},
it cannot succeed if the assumption that 0 /∈ (C · [S])ii for all i ∈ {1, . . . , n} is
not satisfied. The following lemma will be used in the proofs of Proposition 1 and
Theorem 3.

Lemma 1:

[m](i,−) < 0 < [m](i,+) �⇒ (C · [S])ii > 0; (11)

[m](i,+) < 0 < [m](i,−) �⇒ (C · [S])ii < 0. (12)

Proof: Suppose that (C · [S])ii > 0 is false, i.e., there exists yi ≤ 0 such that
yi ∈ (C · [S])ii . Notice that x̃j ∈ [xj ] implies 0 ∈ [xj ] − x̃j . As a consequence

0 ∈ ∑
j 
=i (C · [S])ij · ([xj ] − x̃j ) and finally

(
C · f(x̃)

)
i
+ yi · (xα

i − x̃i ) ∈ [m](i,α) for

all α ∈ {−, +}. Therefore, [m](i,−) < 0 < [m](i,+) would imply

yi(x
−
i − x̃i ) < − (

C · f(x̃)
)
i
< yi(x

+
i − x̃i ), (13)

which is absurd because yi ≤ 0 and x−
i ≤ x̃i ≤ x+

i . The second implication is proved
similarly. �

Proposition 1: If 0 ∈ (C · [S])ii for some i ∈ {1, . . . , n} then the Frommer-Lang-
Schnurr< existence test fails.

Proof: Pick up i ∈ {1, . . . , n} such that 0 ∈ (C · [S])ii . Then both (C · [S])ii > 0
and (C · [S])ii < 0 are false and Lemma 1 proves that the condition (10) cannot be
satisfied, i.e., the Frommer-Lang-Schnurr< existence test cannot succeed. �

Thanks to Proposition 1, we know that both the Frommer-Lang-Schnurr and the
weak Hansen-Sengupta existence tests fail if 0 ∈ (C · [S])ii for some i ∈ {1, . . . , n}.
Theorem 3 completes the comparison including the case where 0 /∈ (C · [S])ii for all
i ∈ {1, . . . , n}. The following lemma will be used in the proof of Theorem 3.
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Lemma 2: Let [u] and [v] be two intervals and τ a real. Then,

([u] > 0 and 0 < τ [u] + [v]) ⇐⇒ ([u] > 0 and − [v]/[u] < τ) , (14)

([u] < 0 and τ [u] + [v] < 0) ⇐⇒ ([u] < 0 and − [v]/[u] < τ) . (15)

Proof: First, [u] > 0 and 0 < τ [u] + [v] is equivalent to: u ∈ [u] and v ∈ [v] imply
u > 0 and 0 < τu + v. This is equivalent to u ∈ [u] and v ∈ [v] imply u > 0 and
−v/u < τ which is eventually equivalent to [u] > 0 and −[v]/[u] < τ . The second
equivalence is proved in a similar way, being careful to reverse an inequality when
multiplying its two sides by a negative number. �

Theorem 3: The Frommer-Lang-Schnurr< existence test succeeds if and only if the
weak Hansen-Sengupta existence test succeeds.

Proof: As proved by Proposition 1, both existence tests fail if 0 ∈ (C · [S])ii for
some i ∈ {1, . . . , n}. Therefore, it remains to prove their equivalence under the
hypothesis that 0 /∈ (C · [S])ii for all i ∈ {1, . . . , n}. The domain of α is fixed to
{−, +} throughout the proof. The condition (10) is obviously equivalent to

(
(∀α)

(
0 < α[m](i,α)

))
or

(
(∀α)

(
α[m](i,α) < 0

))
. (16)

Now, define t± := x±
i − x̃i and the intervals [u] and [v] by

[u] := (C · [S])ii and [v] := gi(x̃) +
∑
j 
=i

(C · [S])ij · ([xj ] − x̃j ), (17)

so [m](i,±) = t±[u] + [v]. Now Lemma 1 proves 0 < α[m](i,α) ⇒ [u] > 0 and

α[m](i,α) < 0 ⇒ [u] < 0. Using the definitions (17), (16) is hence equivalent to

([u] > 0 and (∀α) (0 < αtα[u] + α[v]))

or ([u] < 0 and (∀α) (αtα[u] + α[v] < 0)) .
(18)

Now using Lemma 2, the latter is equivalent to

([u] > 0 and (P )) or ([u] < 0 and (P )) , (19)

where (P ) is (∀α) (−α[v]/[u] < αtα). Factorizing (P ), (19) is equivalent to

([u] > 0 or [u] < 0) and (∀α)
(−α[v]/[u] < αtα

)
. (20)

That is, 0 /∈ [u] and −[v]/[u] < t+ and t− < −[v]/[u]. Using the definitions of t±,
the latter can be written 0 /∈ [u] and x̃i − [v]/[u] < x+ and x− < x̃i − [v]/[u], which
means

0 /∈ [u] and x̃i − [v]/[u] ⊆ int[xi ]. (21)

It remains to notice that x̃i − [v]/[u] = [hi ] to conclude the proof. �
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3.2. An atypical situation

This section presents an atypical situation where the Frommer-Lang-Schnurr exis-
tence test succeeds while all other presented existence tests fail. Consider the function
f (x) := x2+6x−4 and the interval [x] := [−1, 1] and x̃ := 0. The interval evaluation
of the derivative of f will be used as a slope: [s] := 2[x] + 6. Let us compute

[m](−) := f (x̃) + [s](inf [x] − x̃) = [−12, −8], (22)

[m](+) := f (x̃) + [s](sup[x] − x̃) = [0, 4]. (23)

Therefore, [m](−) ≤ 0 ≤ [m](+) and the Frommer-Lang-Schnurr succeeds in proving
the existence of a solution. All the other existence tests presented here fail on this
example. However, this example is a very atypical situation: inf [m](+) is equal to
zero while no rounding error has made it strictly negative. Consider ε � 1. If [x] is
changed to [−1, 1 + ε] then all the presented existence tests succeed. On the other
hand, if [x] is changed to [−1, 1− ε] then all the presented existence tests fail. In this
latter situation, if one uses the contraction provided by the Hansen-Sengupta oper-
ator and then applies a second time the operator using the contracted domain (and
re-evaluating the derivative on this new domain), then the existence of a solution is
proved.

4. Conclusion

The weak Hansen-Sengupta and the Frommer-Lang-Schnurr< existence tests have
been artificially introduced in order to compare the well known Hansen-Sengupta
and the Frommer-Lang-Schnurr existence tests. In spite of their very different expres-
sions, these auxiliary existence tests have been proved to be equivalent. The following
hierarchy is now proved to hold between the Krawczyk, the Frommer-Lang-Schnurr,
the Frommer-Lang-Schnurr<, the weak Hansen-Sengupta, the Hansen-Sengupta
and the interval Newton existence tests (arrows point to more powerful existence
tests).

K.
cf. [8] ��

cf. [3]
��

H.S.
cf. [8] �� I.N.

F.L.S. F.L.S.<obv.
�� �� weak H.S.

Thm. 3
��

obvious

��

Although a very atypical situation has been displayed where replacing inequalities
by strict inequalities in the Frommer-Lang-Schnurr existence test prevents one from
proving existence of a solution, in most situations the Frommer-Lang-Schnurr< and
the Frommer-Lang-Schnurr existence tests are equivalent. Therefore, in practice one
will meet the following hierarchy.

K. �� F.L.S. �� H.S. �� I.N.
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As a consequence, the Hansen-Sengupta existence test should always be preferred
to the Krawczyk and Frommer-Lang-Schnurr existence tests because it is more
powerful for approximatively the same computational cost. The Hansen-Sengupta
operator also presents an important advantage on the Frommer-Lang-Schnurr exis-
tence test independently to its proving power: it contracts the initial domain thus
providing an improved enclosure of the potential solution after its application.
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