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2 Université de Nantes, Nantes Atlantique Université, CNRS, LINA, UMR 6241
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Abstract. When numerical CSPs are used to solve systems of n equa-
tions with n variables, the interval Newton operator plays a key role: It
acts like a global constraint, hence achieving a powerful contraction, and
proves rigorously the existence of solutions. However, both advantages
cannot be used for under-constrained systems of equations, which have
manifolds of solutions. A new framework is proposed in this paper to
extend the advantages of the interval Newton to under-constrained sys-
tems of equations. This is done simply by permitting domains of CSPs
to be parallelepipeds instead of the usual boxes.

1 Introduction

The paper presents a new framework for solving numerical CSPs formed of
under-constrained systems of equations:

〈 x , f(x) = 0 , [x] 〉, (1)

where vectorial notations1 are used, i.e. x = (x1, . . . , xn) is a vector of variables,
f = (f1, . . . , fm), with m < n, is a vector of functions and [x] = ([x1], . . . , [xn])
is a vector of interval domains. These NCSPs arise naturally in a wide range of
applications, among which are surface intersection characterization and plotting
[1], a particular case of implicit equation solving [2], global optimization [3] and
robots kinematics [4].

Algorithms designed for well constrained NCSP [5,6] are not efficient for solv-
ing (1). Indeed, these algorithms are variations of the branch and prune algorithm
where the (preconditioned) interval Newton operator [7] plays a key role: On the
one hand, it acts like a global constraint that performs powerful contraction when
the domains become small enough. On the other hand, it can prove rigorously
the existence of a solution of a well constrained system of equations. However,
these two key contributions of the interval Newton operator are not operating
when dealing with under-constrained systems of equations, mainly because no
preconditioning of these systems of equations has been proposed yet. The main

1 Vectors of reals and vectors of functions are represented with boldface symbols.
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contribution of this paper is to present a framework that extends these two ad-
vantages of the interval Newton operator to NCSPs formed of under-constrained
systems of equations.

In the usual definition of a CSP, each variable is given a domain. As a matter of
fact, it is equivalent to consider the Cartesian product of these variable domains
(which is a box when variable domains are intervals) as a search space for a vector
made of the CSP variables. Then, more complicated sets, which are not anymore
the Cartesian product of variable domains, can be used. The framework proposed
in this paper shows that using parallelepiped domains instead of box domains
can drastically improve the efficiency of branch and prune algorithms dedicated
to (1). On the one hand, parallelepipeds offer a more flexible description of
subsets of R

n than boxes, hence providing a more accurate enclosure of the
NCSP solution set. On the other hand, using parallelepiped domains introduces
an efficient preconditioning process for under-constrained systems of equations,
hence allowing the interval Newton operator to both work as a global constraint
and prove the existence of solutions.

Parallelepipeds have already been used to advantageously replace boxes, for
example to rigorously enclose the solutions of initial values problems (cf. the sur-
vey paper [8] and references therein). The relationship between parallelepipeds
and preconditioning has already been investigated in [9,10], where parallelepipeds
are used to approximate the solution set of linear systems with interval uncertain-
ties. However, the ways and means of the introduction of parallelepiped domains
in the present work are totally different than in [9,10]. Finally, parallelepipeds
have been used in conjunction with existence theorems to build inner approxima-
tions of function ranges in [11], but again in the restricted case of well-constrained
systems of equations.

Outline. The framework proposed in this paper is presented on a motivating ex-
ample in Section 2. Then, the concepts of interval analysis used in this paper are
given in Section 3. The technical description of the proposed branch and prune
algorithm is given in Section 4. Finally, promising experiments are presented in
Section 5.

2 A Motivating Example

The usefulness of the usage of parallelepiped domains instead of box domains is
now illustrated on a simple example.

2.1 Contractions and Bisections Using Box Domains

Let us consider the very simple under-constrained CSP

〈 x , {f(x) = 0} , [x] 〉, (2)

with x = (x1, x2), f(x) = x2
1 + x2

2 − 1 and [x] = ([0.3, 0.7], [0.6, 1.0]). Its solution
set is plotted in Figure 1-(a).
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Fig. 1. (a) Solution set of the CSP (2). (b) Domain after one contraction. (c) Domains
after one bisection and two more contractions.

The key point is to notice that the contraction and bisection processes of a
branch and prune algorithm are not efficient in this situation: A contraction2

is performed in Figure 1-(b), and two more contractions are performed after a
bisection in Figure 1-(c). These plots clearly show that these contractions are
not efficient because the solution set crosses the box domain in its diagonal. The
contraction/bisection would be much more efficient if the solution set crossed the
box domain along one of the axes. Reaching this situation is the goal of using
parallelepiped domains instead of box domains.

2.2 From a Box Domain to a Parallelepiped Domain

To this end, a parallelepiped3 is built whose two axes are respectively approxi-
mately parallel and perpendicular to the solution set. These directions are related
to the gradient of the function f evaluated at the midpoint of the box domain.
Once the parallelepiped axes are computed, the parallelepiped is chosen as small
as possible under the constraint that it contains the original box domain (cf.
Figure 2-(a) where the former box domain is represented using dashed lines).

Note that changing the box domain to an enclosing parallelepiped domain in-
troduces new solutions on the border of the parallelepiped domain (the solutions
that are inside the parallelepiped domain but outside the former box domain).
In order to reject these additional solutions (which otherwise would be redun-
dant with the neighbor domains), the former box domain is reintroduced as four
inequality constraints which are added to the constraint store.

To see how a parallelepiped domain can improve the contraction/bisection
process, we have to formalize its definition: This parallelepiped is the image of
a box through an affine map u �→ C · u + x̃, i.e.

{C · u + x̃ : u ∈ [u]}, (3)

2 In this introducing example, the best contractions are performed. In practice, con-
tractions are not that efficient. Nevertheless, this illustrates the best that can be
obtained from both methods.

3 Note that in this motivating example parallelepipeds have perpendicular axes, but
this is not the case in general for higher dimensions.
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Fig. 2. (a) Enclosing parallelepiped domain for the CSP (2). (b) The same CSP ex-
pressed in the auxiliary basis formed of the parallelepiped axes.

where

– The matrix C ∈ R
2×2 is a square matrix. This matrix gives its shape to the

parallelepiped and is chosen so that the solution set is approximately parallel
to one of its sides. This is done considering the gradient of the function
evaluated at the midpoint of the box (cf. Section 4 for more details).

– The vector x̃ is the midpoint of the box [x].
– The box [u] is computed in such a way that the parallelepiped encloses the

box domain [x], i.e. [u] = C−1 · ([x] − x̃) where interval arithmetic is used
(cf. Section 3).

Then, the CSP (2) can be expressed in the auxiliary basis formed of the charac-
teristic axes of the parallelepiped, giving rise to the auxiliary CSP

〈 u , {g(u) = 0} , [u] 〉, (4)

with g(u) = f(C · u + x̃), that is explicitly

g(u1, u2) = f(C11u1 + C12u2 + x̃1, C21u1 + C22u2 + x̃2). (5)

The solution sets of (4) is represented by Figure 2-(b). As mentioned previ-
ously, four linear inequalities are added to the constraints of (4) which rep-
resent the belonging to the original box domain (they are not given explic-
itly in (4) for clarity). These inequalities are represented using dashed lines
in Figure 2-(b). Note that the solution sets of (2) and (4) are closely related:
The former is exactly the image of the latter through the affine transformation
u �→ C · u + x̃.

The next two subsections show how to contract and bisect this parallelepiped
domain.
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Fig. 3. Contracting parallelepiped domains

2.3 Contracting Parallelepiped Domains

Contracting the parallelepiped {C · u + x̃ : u ∈ [u]} consists in contracting its
characteristic domain [u]. The aim is to keep all the solutions of the original
CSP (2) within the contracted parallelepiped. This is obviously equivalent to
contracting [u] without losing any solution of the auxiliary CSP (4). As this later
CSP has a box domain, one can use the usual techniques dedicated to NCSPs.
Note that since the solution set crosses the parallelepiped in the direction u2, the
constraint g(u) = 0 will contract efficiently the domain [u1] but will certainly be
useless for the domain [u2]. On the other hand, the inequality constraints coming
from the box domain will help contracting the domain [u2]. The contraction of [u]
obtained for this introducing example is shown in Figure 3. Figure 3-(a) shows
how [u] is contracted using the auxiliary CSP (4) while Figure 3-(b) shows the
corresponding contraction for the parallelepiped domain of the original CSP
(2). Comparing Figure 3-(b) to Figure 1-(b) shows how much more efficient the
contraction of the parallelepiped domain is compared to the contraction of the
original box domain.

The auxiliary CSP (4) is actually more complicated than the original CSP (2):
The function g(u) = f(C ·u+ x̃) contains more occurrences of each variables (cf.
Equation (5)), which is well known to decrease the efficiency of interval based
methods. However, this situation is very similar to the preconditioning of the
interval Newton operator. And indeed, this acts like a right-preconditioning4

where the interval Newton operator should be very efficient. Actually, Section 4
shows that this right-preconditioning process allows the interval Newton to both
act like a global constraint, and rigorously prove the existence of the manifold
of solutions. In the context of this introducing example, the interval Newton
operator proves that for all u2 ∈ [u2] there exists u1 ∈ [u1] such that g(u) = 0,
hence proving that the auxiliary solution set (4) crosses [u] along u2. Therefore,
the original (2) is proved to cross the parallelepiped in this direction.
4 I.e. a preconditioning where the change of basis is applied before the function, see

e.g. [9,10,11].
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2.4 Bisecting Parallelepiped Domains

Bisecting a parallelepiped {C ·u+ x̃ : u ∈ [u]} into two smaller parallelepipeds is
naturally done by bisecting its characteristic domain [u] (cf. Figure 4-(a)), thus
obtaining two new parallelepipeds {C · u + x̃ : u ∈ [u′]} and {C · u + x̃ : u ∈
[u′′]} (cf. Figure 4-(b)). Note that it obviously makes no sense to bisect [u] to
([u′

1], [u2]) and ([u′′
1 ], [u2]), which would not preserve the solution set transverse

crossing. Instead, bisecting [u] to ([u1], [u′
2]) and ([u1], [u′′

2 ]) does preserve this
transversality, and is therefore a very efficient bisection heuristic. This bisection
heuristic will be trivially extended to the general case of arbitrary dimensions.

Once bisected, their characteristic matrices are updated using the same pro-
cess as described previously, but based on the gradient vector of f evaluated
at the center of each new parallelepiped. This allows the new parallelepipeds
adapting their shape more accurately to the shape of the solution set (cf. Figure
4-(c)). Furthermore, as done with the original box domain, each former par-
allelepiped domain is expressed as four additional inequality constraints in its
CSP (represented in dashed lines in Figure 4-(c)), which will be used to re-
duce the overlapping introduced when updating the characteristic matrices of
the new parallelepipeds. Finally, a contraction is performed on these two new
parallelepipeds, leading to Figure 4-(d). Comparing this figure to Figure 1-(c)
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Fig. 4. Bisecting parallelepiped domains
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shows how important is the improvement obtained using parallelepipeds domains
instead of box domains.

The gains in contracting efficiency and existence proving illustrated on this
motivating example are even more important when dealing with more compli-
cated NCSPs of higher dimension (c.f. subsections 5.3 and 5.4).

3 Interval Analysis for NCSP Resolution

The modern interval analysis was born in the 60’s with [12]. Since, it has been
widely developed and is today one central tool in the resolution of constraints
acting over continuous domains (see [13] and extensive references).

3.1 Interval Arithmetic

Intervals, interval vectors and interval matrices are denoted using brackets. Their
set are denoted respectively by IR, IR

n and IR
n×m. The elementary func-

tion are extended to intervals in the following way: let ◦ ∈ {+,−,×, /} then
[x] ◦ [y] = {x ◦ y : x ∈ [x], y ∈ [y]} (division is defined only for non zero contain-
ing interval denominators). E.g. [a, b] + [c, d] = [a + c, b + d]. Also, continuous
one variable functions f(x) are extended to intervals using the same definition:
f([x]) = {f(x) : x ∈ [x]}, which is an interval because f is continuous. When
one represents numbers using a finite precision, the previous operations cannot
be computed in general. The outer rounding is then used so as to keep valid
the interpretations. For example, [1, 2] + [2, 3] would be equal to [2.999, 5.001] if
rounded with a three decimal accuracy.

Then, an expression which contains intervals can be evaluated using this in-
terval arithmetic. The main property of interval analysis is that such an interval
evaluation gives rise to a superset of the image through the function of the in-
terval arguments: For example, [x] × ([y] − [x]) ⊇ {x(y − x) : x ∈ [x], y ∈ [y]}.
In some cases (e.g. when the expression contains only one occurrence of each
variable), this enclosure is optimal. In particular, the computation C · [u] + x̃ is
the smallest box that contains the parallelepiped {C.u + x̃ : u ∈ [u]}.

3.2 Interval Contractors

Given an n-ary constraint c and a box [x] ∈ R
n, a contractor for c will con-

tract the box [x] without losing any solution of c. Some widely used contrac-
tors are based on the 2B-consistency (also called hull-consistency) or the box
consistency [14,15], which are adaptations of the arc-consistency to continuous
domains. They are both applied to one constraint at a time, hence suffering of
the usual drawbacks of the locality of their application. On the other hand, the
preconditioned interval Newton [7] can be applied to a set of n equations and
n variables. Under some hypothesis on the Jacobian matrix of the system eval-
uated on the domain of the CSP, it will be able to treat this set of constraint
as a global constraint and hence achieve a powerful contraction. Furthermore,
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the interval Newton can rigorously prove the existence of a solution in a CSP
domain. These two characteristics of the interval Newton makes it a key tool
for the resolution of NCSPs, however previously restricted to well-constrained
systems of equations.

4 Description of the Algorithm

The branch and prune Algorithm 1 used here is classical except for line 1 which
will be explained in the rest of the paper: The input is a CSP P and the output
a set of CSPs L = {P1, . . . ,Ps} whose disjunction is equivalent to the original
CSP. Formally,

Sol(P) =
⋃

Q∈L
Sol(Q). (6)

Normally, the set of CSPs L is a more accurate description of the solution set
that the original CSP: First, the union of their domains is much smaller than
the original domain, hence providing a sharper enclosure. Second, it is often
possible to prove that these CSPs actually contains some solutions, which is
a crucial information. The solution existence proof is not explicitly described
in Algorithm 1 for clarity. Informally, some existence proof can result of the
contraction performed at Line 1 when it is computed using the interval Newton
operator. When the existence of solutions is proved, this information is attached
to the CSP.

When the algorithm starts, the domain of the CSP is a box. The function
UpdateDomainShape at Line 1 allows changing the shape of the domain (chang-
ing a box to a parallelepiped when first successfully applied, or a parallelepiped
to another parallelepiped more suited to the shape of the solution set). The first
change from a box to a parallelepiped is performed only when the shape of the
solution set can be foreseen from the evaluation of the constraints derivatives
(cf. Subsection 4.1), which implies that the box domain is small enough. As a con-
sequence, the algorithm will use box domains in a first phase, and parallelepiped
domains as soon as box domains are small enough to identify the directions of
the solution manifold. While the CSP domain is a box, usual contractors are used
to prune its domain (2B-consistency based contractors and non-preconditioned
interval Newton operator in our implementation of Algorithm 1, whose collabo-
ration is known to be efficient). When the domain is changed to a parallelepiped,
the interval Newton operator is adapted and allows powerful contractions and
existence proof of solutions (cf. Subsection 4.2). Finally, parallelepiped domains
are bisected similarly to box domains (cf. Subsection 4.3).

4.1 Changing the Shape of a Parallelepiped

The function UpdateDomainShape(P) attempts to find a new parallelepiped
domain {C · u + x̃ : u ∈ [u]} that will be more suited to the solution set of
P . The former domain of P is the parallelepiped {D · v + x̃ : v ∈ [v]}, which
is possibly a box in which case D = id (note that the former and the new
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Algorithm 1. Branch and prune algorithm using parallelepiped domains

Input: P = 〈x,C, [x]), ε
Output: L = {P1, . . . ,Ps}
T ← {P}; L ← ∅;1

while ( not T = ∅ ) do2

P ← Extract(T );3

if ( Measure(Domain(P)) > ε ) then4

P ′ ← UpdateDomainShape(P);5

P ′′ ← Contract(P ′);6

if ( Domain(P ′′) �= ∅ ) then7

(Q,Q′)← Bisect(P ′′);8

T ← T ∪ {Q,Q′};9

end10

else11

L ← L ∪ {P};12

end13

end14

return (L);15

parallelepiped domains share the same characteristic vector x̃). This process is
done in two steps: First a candidate new parallelepiped domain {C · u + x̃ : u ∈
[u]} is computed. Then, the efficiency of this candidate parallelepiped domain
is verified a posteriori. If not useful, the former parallelepiped is kept. If the
candidate parallelepiped domain is chosen, then some inequality constraints are
added to the CSP in order to prevent some parasite solutions to appear due to
the enclosure of the former parallelepiped domain inside a new parallelepiped
(cf. Section 2).

Computation of the Candidate Parallelepiped Domain. As illustrated in
Section 2, the aim of using a new parallelepiped domain {C ·u+ x̃ : u ∈ [u]} is to
apply the interval Newton operator in the auxiliary basis of the parallelepiped
to reduce directly the box domain [u]. Hence, the parallelepiped characteristic
matrix C is chosen aiming an efficient application of the interval Newton oper-
ator. The box domain [u] will be reduced using the constraint g(u) = 0 where
g(u) = f(C · u + x̃) (cf. Section 2). To obtain an efficient application of the
interval Newton operator, the under-constrained system g(u) = 0 needs to be
interpreted as a system of equations m equations and m variables, where the
remain n − m variables are considered as parameters. Then, to be efficient the
interval Newton operator requires the Jacobian Jg of g to be close to the ma-
trix

(
Im×m 0m×(n−m)

)
, where Im×m is the identity matrix of size m×m and

0m×(n−m) is the null matrix of size m × (n − m). As Jg = Jf · C, it is natural
to choose C such that

Jf([x]) · C ≈ (
Im×m 0m×(n−m)

)
, (7)

where [x] is the interval hull of the parallelepiped domain, i.e. [x] = C · [u] + x̃.
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To this end, C is constructed based on the evaluation of the Jacobian of f
at x̃. The matrix C−1 is first constructed as follows, and C will be obtained
inverting C−1. The ith line (C−1)i of C−1 is defined by:

– The gradient of fi evaluated at x̃ if i ≤ m.
– A vector orthogonal to all previously computed (C−1)k for 1 ≤ k < i (these

vectors are not uniquely determined, but a set of such vectors is easily obtain
using a Gram-Schmidt orthogonalization).

Then, this matrix is inverted5 to obtain C. The matrix C thus satisfies Jf(x̃)·C =(
Im×m 0m×(n−m)

)
, up to rounding errors (indeed by construction, Jf(x̃) · C

is made of the m first rows of the n × n identity matrix).
Finally, the characteristic domain [u] is computed so that the new paral-

lelepiped domain encloses the former: [u] = (C−1D)[v]. This time, interval
arithmetic is used to ensure a rigorous enclosure.

Verification of the Efficiency of the Candidate New Parallelepiped Do-
main. Formally, the interval Newton will be efficient if the square matrix formed
of the first m columns of Jf([x]) · C is diagonally dominant (cf. Theorem 5.2.5
in [7]). Therefore, the interval matrix Jf([x]) ·C is computed explicitly, and the
diagonal dominance of its first m columns is checked. If it is diagonally domi-
nant, the parallelepiped domain is updated, and some inequality constraints are
added to the CSP (cf. the next section). Otherwise, the former parallelepiped
domain is kept, i.e. C = D and [u] = [v].

Remark 1. If x is a solution (i.e. f(x) = 0) and is singular (i.e. Df(x) is not full
rank, e.g. has two proportional lines) then Jf([x]) · C will never be diagonally
dominant. In this case, the algorithm keeps working with box domains around
this point. This situation is untypical as some arbitrary small perturbation of
the problem can change the singular solutions to regular solutions.

Adding Linear Inequalities to the new CSP. As illustrated in Section 2, the
enclosure of the former parallelepiped domain by a new parallelepiped domain
is not perfect. Hence, some solutions that are inside the new domain may not be
in the former, which would lead to redundant solutions if not properly treated.
To this end, the former parallelepiped domain is reintroduced in the new CSP
as 2n linear constraints:

vi ≤
∑

1≤j≤n

Dijxj ≤ vi, (8)

for 1 ≤ i ≤ n. As a consequence, the former and the new CSPs have the same
solution set. These linear inequalities will be denoted using the scalar product
notation a · x ≤ b where a = (Di1, . . . , Din) and b = vi, or a = −(Di1, . . . , Din)
and b = −vi.

5 Note that C needs only to be computed approximately and thus standard double
precision computations can be used at this step.



200 A. Goldsztejn and L. Granvilliers

4.2 Contracting a Parallelepiped Domain

When the domain of the CSP is a box, the usual techniques are used to contract
it. When it is a parallelepiped, two kind of constraints are in the store: the linear
inequalities a · x ≤ b and the nonlinear equalities f(x) = 0.

Linear Inequalities. In order to contract the characteristic domain [u] of the
parallelepiped {C · u + x̃ : u ∈ [u]} under the linear inequality a · x ≤ b, this
constraint is simply expressed in the basis of the parallelepiped:

a · x ≤ b ⇐⇒ (a · C) · u ≤ b − a · x̃. (9)

Then, [u] is contracted under the new linear inequality using the 2B-consistency.

Nonlinear Equalities. The nonlinear equalities are also expressed in the basis
of the parallelepiped: f(x) = 0 ⇐⇒ g(u) = 0, with g(u) = f(C ·u+ x̃). Then
the m first components of [u] are contracted considering this under-constrained
system of equations as a well constrained parametric systems of equations. Let
u′ = (u1, . . . , um) be the vector of the first m variables, and u′′ = (um+1, . . . , un)
be the vector of the remaining variables, which are considered as parameters.
The interval Newton is then applied to the parametric system of equation (see
[16] for details) to contract [u′] to a smaller box [ũ′]

[ũ′] = û′ + Γ ([Ju′ ], [u′] − û′,b) (10)

with b = −f(C ·u+ x̃)− [Ju′′ ] · ([u′′]− û′′) where [Ju′ ] and [Ju′′ ] are respectively
the square interval matrix formed of the first m columns of Jf(C.[u]+ x̃) ·C and
the rectangular matrix formed of the remaining columns. The operator Γ is the
interval Gauss-Seidel method [7]. The vectors û′ and û′′ are the midpoint of the
respective boxes.

As the interval matrix [Ju′ ] is centered on the identity matrix and diagonally
dominant (cf. Section 4.1), the interval Newton operator may be strictly con-
tracting (i.e. [ũ′] is included inside the interior of [u′]) and hence is able to prove
the existence of solutions. In this case, the following existence statement holds
[16]: ∀u′′ ∈ [u′′], ∃u′ ∈ [u′],g(u) = 0, hence proving that the solution set crosses
the whole parallelepiped domain transversally. When the existence is proved,
this information is recorded together with the CSP.

4.3 Bisecting a Parallelepiped Domain

A parallelepiped domain {C · u + x̃ : u ∈ [u]} is bisected splitting [u]. However,
as the contraction of [u′] performed using the interval Newton is convergent, it
is useless to bisect these components of the box. Therefore, [u] is bisected to [ũ1]
and [ũ2] where the largest component of u′′ has been bisected. This is sufficient
to ensure the convergence of the algorithm by Theorem 5.2.5 in [7]. Finally, the
two bisected parallelepipeds {C · u + x̃1 : u ∈ [u1]} and {C · u + x̃2 : u ∈ [u2]}
are defined as follows: for both k = 1 and k = 2, x̃k = C · mid([ũk]) + x̃ so that
this vector is at the center of the parallelepiped, and hence is representative of
the domain. The domains [u1] and [u2] are then updated accordingly translating
[ũ1] and [ũ2], i.e. [uk] = [ũk] + C−1(x̃ − x̃k).
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5 Experiments

Experiments presented in this section cover a wide range of situations, from
2D implicit functions to higher dimensional systems. For comparing the usage
of parallelepiped domains and box domains, the volume of each enclosure will
be compared. In order to have a dimension free measure, the reduced-volume,
defined as the nth root of the volume where n is the dimension of the problem,
will be used. Note that the volume of a parallelepiped is simply the volume of its
characteristic domain multiplied by the absolute value of the determinant of its
characteristic matrix. The algorithms have been run on a Intel(R) Core(TM)2
Duo CPU at 2.20 GHz, with 4Gb of memory, under Windows XP.

5.1 Intersection of Surfaces

The validated intersection between a sphere and a cylinder is modeled by a CSP
with 3 variables and 2 constraints. Both parallelepiped domains and box do-
mains have been used to compute the enclosure of this geometrical object for
comparison purpose. Figure 5 shows that, for the same number of bisections,
the parallelepiped domains provide a much more accurate enclosure of the solu-
tion set. Furthermore, the solution set has been proved rigorously to cross each
parallelepiped domain. That information is unavailable when using box domains.

5.2 Two Dimensional Implicit Plot

The problem consists in determining the implicit graph of a complicated function
proposed in [1]:

f(x) = x1 cos(x2) cos(x1x2) + x2 cos(x1) cos(x1x2) + x1x2 cos(x1) cos(x2). (11)

Fig. 5. Intersection of a sphere and a cylinder (both plotted in transparent for infor-
mation). Enclosures obtained using parallelepiped domains (left) or with box domains
(right) after 100 bisections.
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Fig. 6. Verified implicit plot of Tupper’s function

Note that in [1] each plus sign is actually consider as a plus/minus sign, hence
leading to four different functions, while here we treat (11). After 72 seconds,
the enclosure shown on Figure 6 has been computed for f(x) = 0. All the
parallelepiped domains are rigorously proved to be crossed by the solution set,
this latter being thus completely determined. Timings cannot be compared wrt.
the algorithm proposed in [1] because the present approach provides much more
information than [1], where a simple outer approximation is computed, exactly
as accurate as the pixel size of the resolution.

5.3 The Layne-Watson Exponential Cosine Curve

This system of 3 variables and 2 equations is taken from [2]. This NCSP is
an intersection of surfaces whose equations involve compositions of cosine and
exponential functions. Once more, the parallelepiped domains provide a more
accurate enclosure than box domains, and allow proving the existence of the
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Fig. 7. Log/log plots of the reduced-volume of the enclosure against the time needed
to compute this enclosure. Left: The Layne-Watson Exponential Cosine Curve. Right:
The Parametrized Broyden Tridiagonal.
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whole manifold of solutions. For a more accurate comparison of performances,
the left hand side graphic of Figure 7 displays the time needed to obtain a given
reduced-volume for both methods. At a first glance, the parallelepiped domains
are much more efficient than box domains. Interpreting more precisely these
log/log plots, both curves are almost lines. Therefore, both algorithms display
a time increasing polynomially with the inverse of the reduced-volume. What
is noteworthy is that the slopes of the two lines are different (corresponding to
polynomials of different degree), which means that the parallelepiped domains
improve not only the timings but also the complexity of the branch and prune
algorithm.

5.4 The Parametrized Broyden Tridiagonal

The Broyden tridiagonal problem is a well-known system of n equations and
n unknowns [17]. The problem is changed to a parametric problem adding a
variable α:

(α − 2xi)xi − xi−1 − 2xi+1 + 1 = 0 (12)

for 1 ≤ i ≤ n, with x0 = xn+1 = 0 for compact notations. The original value
of α is 3, so we choose the domain [2, 4] for this additional variable. As in the
original problem, the domains of the other variables are [−100, 100]. Introducing
such a parameter allows studying how the solutions of the original Broyden
tridiagonal problem change with the variations of this parameter. Once more,
the usage of parallelepiped domains drastically reduces the time needed to obtain
an enclosure of a given reduced-volume, cf. Figure 7. And again, Figure 7 shows
that the time needed is approximately a polynomial of the inverse of the reduced-
volume, while the usage of parallelepiped domains has reduced the degree of this
polynomial.

6 Discussion

These first experiments show that indeed the global constraint contraction per-
formed on parallelepiped domains drastically improves the resolution process
(the degree of the polynomial time complexity to reach a given accuracy seems
to have been reduced, leading to timings divided by more than 100). Further-
more, the proof of existence of solutions works well for non singular solutions,
and allows giving a complete description of the solution set under the form of a
sharp enclosure which is proved to contain solutions.

Under-constrained systems of equations appear in many contexts. An impor-
tant part of the forthcoming work will be to include this framework in an efficient
solver to be able to tackle real life problems, like robot workspace computation.
Furthermore, parallelepiped domains may improve the efficiency of global op-
timization algorithms, which often have to solve under-constrained systems of
equations. On a theoretical point of view, the introduction of universally quan-
tified parameters in this framework will allow tackling interesting problems, like
the robust intersection of surfaces with uncertain parameters.
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